The spectrum of a group algebra functor #
We show that, for a domain R
, G ↦ Spec R[G]
forms a fully faithful functor from commutative
groups to group schemes over Spec R
.
@[reducible, inline]
The diagonalizable monoid scheme functor.
Equations
- specCommMonAlg R = (commMonAlg ↑R).comp (bialgSpec R)
Instances For
@[reducible, inline]
The diagonalizable group scheme functor.
Equations
- specCommGrpAlg R = (commGrpAlg ↑R).comp (hopfSpec R)
Instances For
The diagonalizable group scheme functor over a domain is fully faithful.
Instances For
instance
specCommGrpAlg.instFull
{R : CommRingCat}
[IsDomain ↑R]
:
(specCommGrpAlg (CommRingCat.of ↑R)).Full
instance
specCommGrpAlg.instFaithful
{R : CommRingCat}
[IsDomain ↑R]
:
(specCommGrpAlg (CommRingCat.of ↑R)).Faithful