The cocartesian monoidal category structure on commutative R
-algebras #
The explicit cocone with tensor products as the fibered product in CommAlg
.
Equations
Instances For
@[simp]
@[simp]
@[simp]
Verify that the pushout cocone is indeed the colimit.
Equations
- One or more equations did not get rendered due to their size.
Instances For
Equations
- CommAlg.isInitialSelf = CategoryTheory.Limits.IsInitial.ofUniqueHom (fun (A : CommAlg R) => CommAlg.ofHom (Algebra.ofId R ↑A)) ⋯
Instances For
Equations
- One or more equations did not get rendered due to their size.
theorem
CommAlg.associator_hom_unop_hom
{R : Type u}
[CommRing R]
{A B C : CommAlg R}
:
Hom.hom (CategoryTheory.MonoidalCategoryStruct.associator (Opposite.op A) (Opposite.op B) (Opposite.op C)).hom.unop = ↑(Algebra.TensorProduct.assoc R ↑A ↑B ↑C).symm
theorem
CommAlg.associator_inv_unop_hom
{R : Type u}
[CommRing R]
{A B C : CommAlg R}
:
Hom.hom (CategoryTheory.MonoidalCategoryStruct.associator (Opposite.op A) (Opposite.op B) (Opposite.op C)).inv.unop = ↑(Algebra.TensorProduct.assoc R ↑A ↑B ↑C)