Documentation

Toric.Mathlib.Algebra.MonoidAlgebra.Defs

theorem AddMonoidAlgebra.induction_linear {k : Type u_3} {G : Type u_4} [Semiring k] [AddMonoid G] {p : AddMonoidAlgebra k GProp} (f : AddMonoidAlgebra k G) (zero : p 0) (add : ∀ (f g : AddMonoidAlgebra k G), p fp gp (f + g)) (single : ∀ (a : G) (b : k), p (single a b)) :
p f
noncomputable def MonoidAlgebra.mapRangeRingHom {R : Type u_3} {S : Type u_4} {M : Type u_5} [Monoid M] [Semiring R] [Semiring S] (f : R →+* S) :

The ring homomorphism of monoid algebras induced by a homomorphism of the base rings.

Equations
Instances For
    @[simp]
    theorem MonoidAlgebra.mapRangeRingHom_apply {R : Type u_3} {S : Type u_4} {M : Type u_5} [Monoid M] [Semiring R] [Semiring S] (f : R →+* S) (x : MonoidAlgebra R M) (m : M) :
    ((mapRangeRingHom f) x) m = f (x m)
    @[simp]
    theorem MonoidAlgebra.mapRangeRingHom_single {R : Type u_3} {S : Type u_4} {M : Type u_5} [Monoid M] [Semiring R] [Semiring S] (f : R →+* S) (a : M) (b : R) :
    (mapRangeRingHom f) (single a b) = single a (f b)