Documentation

Toric.Mathlib.Algebra.MonoidAlgebra.Defs

@[simp]
theorem MonoidAlgebra.smul_apply {R : Type u_1} {M : Type u_2} [Semiring R] (r : R) (m : M) (x : MonoidAlgebra R M) :
(r x) m = r x m
@[simp]
theorem MonoidAlgebra.single_neg {R : Type u_1} {M : Type u_2} [Ring R] (a : M) (b : R) :
single a (-b) = -single a b
@[simp]
theorem MonoidAlgebra.neg_apply {R : Type u_1} {M : Type u_2} [Ring R] (m : M) (x : MonoidAlgebra R M) :
(-x) m = -x m
@[simp]
theorem AddMonoidAlgebra.single_neg {R : Type u_1} {M : Type u_2} [Ring R] (a : M) (b : R) :
single a (-b) = -single a b
@[simp]
theorem MonoidAlgebra.coe_add {k : Type u₁} {G : Type u₂} [Semiring k] (f g : MonoidAlgebra k G) :
⇑(f + g) = f + g
theorem MonoidAlgebra.induction_linear {k : Type u₁} {G : Type u₂} [Semiring k] [Monoid G] {p : MonoidAlgebra k GProp} (f : MonoidAlgebra k G) (zero : p 0) (add : ∀ (f g : MonoidAlgebra k G), p fp gp (f + g)) (single : ∀ (a : G) (b : k), p (single a b)) :
p f
@[simp]
theorem AddMonoidAlgebra.coe_add {k : Type u₁} {G : Type u₂} [Semiring k] (f g : AddMonoidAlgebra k G) :
⇑(f + g) = f + g
theorem AddMonoidAlgebra.induction_linear {k : Type u₁} {G : Type u₂} [Semiring k] [AddMonoid G] {p : AddMonoidAlgebra k GProp} (f : AddMonoidAlgebra k G) (zero : p 0) (add : ∀ (f g : AddMonoidAlgebra k G), p fp gp (f + g)) (single : ∀ (a : G) (b : k), p (single a b)) :
p f
@[simp]
theorem MonoidAlgebra.liftNCRingHom_single {k : Type u₁} {G : Type u₂} {R : Type u_4} [Semiring k] [Monoid G] [Semiring R] (f : k →+* R) (g : G →* R) (h_comm : ∀ (x : k) (y : G), Commute (f x) (g y)) (a : G) (b : k) :
(liftNCRingHom f g h_comm) (single a b) = f b * g a
noncomputable def MonoidAlgebra.mapRangeRingHom {R : Type u_3} {S : Type u_4} {M : Type u_5} [Monoid M] [Semiring R] [Semiring S] (f : R →+* S) :

The ring homomorphism of monoid algebras induced by a homomorphism of the base rings.

Equations
Instances For
    @[simp]
    theorem MonoidAlgebra.mapRangeRingHom_apply {R : Type u_3} {S : Type u_4} {M : Type u_5} [Monoid M] [Semiring R] [Semiring S] (f : R →+* S) (x : MonoidAlgebra R M) (m : M) :
    ((mapRangeRingHom f) x) m = f (x m)
    @[simp]
    theorem MonoidAlgebra.mapRangeRingHom_single {R : Type u_3} {S : Type u_4} {M : Type u_5} [Monoid M] [Semiring R] [Semiring S] (f : R →+* S) (a : M) (b : R) :
    (mapRangeRingHom f) (single a b) = single a (f b)