@[simp]
theorem
MonoidAlgebra.linearCombination_of
{R : Type u_1}
{M : Type u_2}
[Semiring R]
[MulOneClass M]
:
@[simp]
theorem
AddMonoidAlgebra.linearCombination_of
{R : Type u_1}
{M : Type u_2}
[Semiring R]
[AddZeroClass M]
:
@[simp]
theorem
MonoidAlgebra.induction_linear
{k : Type u₁}
{G : Type u₂}
[Semiring k]
[Monoid G]
{p : MonoidAlgebra k G → Prop}
(f : MonoidAlgebra k G)
(zero : p 0)
(add : ∀ (f g : MonoidAlgebra k G), p f → p g → p (f + g))
(single : ∀ (a : G) (b : k), p (single a b))
:
p f
@[simp]
theorem
MonoidAlgebra.mapRangeRingHom_apply
{R : Type u_1}
{S : Type u_2}
{M : Type u_3}
[Monoid M]
[Semiring R]
[Semiring S]
(f : R →+* S)
(x : MonoidAlgebra R M)
(m : M)
: