def
CategoryTheory.Over.equivalenceOfIsTerminal
{C : Type u_1}
[Category.{u_2, u_1} C]
{X : C}
(hX : Limits.IsTerminal X)
:
If X : C
is initial, then the under category of X
is equivalent to C
.
Equations
- One or more equations did not get rendered due to their size.
Instances For
@[simp]
theorem
CategoryTheory.Over.equivalenceOfIsTerminal_inverse_map
{C : Type u_1}
[Category.{u_2, u_1} C]
{X : C}
(hX : Limits.IsTerminal X)
{X✝ Y✝ : C}
(f : X✝ ⟶ Y✝)
:
@[simp]
theorem
CategoryTheory.Over.equivalenceOfIsTerminal_counitIso
{C : Type u_1}
[Category.{u_2, u_1} C]
{X : C}
(hX : Limits.IsTerminal X)
:
@[simp]
theorem
CategoryTheory.Over.equivalenceOfIsTerminal_functor
{C : Type u_1}
[Category.{u_2, u_1} C]
{X : C}
(hX : Limits.IsTerminal X)
:
@[simp]
theorem
CategoryTheory.Over.equivalenceOfIsTerminal_unitIso
{C : Type u_1}
[Category.{u_2, u_1} C]
{X : C}
(hX : Limits.IsTerminal X)
:
(equivalenceOfIsTerminal hX).unitIso = NatIso.ofComponents (fun (Y : Over X) => isoMk (Iso.refl ((Functor.id (Over X)).obj Y).left) ⋯) ⋯
@[simp]
theorem
CategoryTheory.Over.equivalenceOfIsTerminal_inverse_obj
{C : Type u_1}
[Category.{u_2, u_1} C]
{X : C}
(hX : Limits.IsTerminal X)
(Y : C)
: