Documentation

Toric.Mathlib.Geometry.Convex.Polytope

Polytopes #

We define polytopes as convex hulls of finite sets.

def IsPolytope (R : Type u_1) {E : Type u_3} [Semiring R] [PartialOrder R] [AddCommMonoid E] [Module R E] (s : Set E) :

A set is a polytope if it is the convex hull of finitely many points.

Equations
Instances For
    @[simp]
    theorem IsPolytope.empty {R : Type u_1} {E : Type u_3} [Semiring R] [PartialOrder R] [AddCommMonoid E] [Module R E] :
    @[simp]
    theorem IsPolytope.singleton {R : Type u_1} {E : Type u_3} [Semiring R] [PartialOrder R] [AddCommMonoid E] [Module R E] {x : E} :
    @[simp]
    theorem IsPolytope.segment {R : Type u_1} {E : Type u_3} [Semiring R] [PartialOrder R] [AddCommMonoid E] [Module R E] {x y : E} [IsOrderedRing R] :
    @[simp]
    theorem IsPolytope.convexHull_finset {R : Type u_1} {E : Type u_3} [Semiring R] [PartialOrder R] [AddCommMonoid E] [Module R E] {s : Finset E} :
    IsPolytope R ((convexHull R) s)
    theorem IsPolytope.neg {R : Type u_1} {E : Type u_3} [Ring R] [PartialOrder R] [AddCommGroup E] [Module R E] {s : Set E} :
    IsPolytope R sIsPolytope R (-s)
    theorem IsPolytope.add {𝕜 : Type u_2} {E : Type u_3} [Field 𝕜] [LinearOrder 𝕜] [IsStrictOrderedRing 𝕜] [AddCommGroup E] [Module 𝕜 E] {s t : Set E} :
    IsPolytope 𝕜 sIsPolytope 𝕜 tIsPolytope 𝕜 (s + t)
    theorem IsPolytope.sub {𝕜 : Type u_2} {E : Type u_3} [Field 𝕜] [LinearOrder 𝕜] [IsStrictOrderedRing 𝕜] [AddCommGroup E] [Module 𝕜 E] {s t : Set E} (hs : IsPolytope 𝕜 s) (ht : IsPolytope 𝕜 t) :
    IsPolytope 𝕜 (s - t)