Documentation

Toric.Mathlib.RingTheory.Bialgebra.Convolution

Convolution product on bialgebra homs #

This file constructs the ring structure on algebra homs C → A where C is a bialgebra and A an algebra, and also the ring structure on bialgebra homs C → A where C and A are bialgebras. Both multiplications are given by

         .
        / \
f * g = f g
        \ /
         .
noncomputable instance AlgHom.instOne_toric {R : Type u_1} {A : Type u_2} {C : Type u_4} [CommSemiring R] [CommSemiring A] [Semiring C] [Bialgebra R C] [Algebra R A] :
One (C →ₐ[R] A)
Equations
noncomputable instance AlgHom.instMul_toric {R : Type u_1} {A : Type u_2} {C : Type u_4} [CommSemiring R] [CommSemiring A] [Semiring C] [Bialgebra R C] [Algebra R A] :
Mul (C →ₐ[R] A)
Equations
noncomputable instance AlgHom.instPowNat_toric {R : Type u_1} {A : Type u_2} {C : Type u_4} [CommSemiring R] [CommSemiring A] [Semiring C] [Bialgebra R C] [Algebra R A] :
Equations
theorem AlgHom.one_def {R : Type u_1} {A : Type u_2} {C : Type u_4} [CommSemiring R] [CommSemiring A] [Semiring C] [Bialgebra R C] [Algebra R A] :
theorem AlgHom.mul_def {R : Type u_1} {A : Type u_2} {C : Type u_4} [CommSemiring R] [CommSemiring A] [Semiring C] [Bialgebra R C] [Algebra R A] (f g : C →ₐ[R] A) :
theorem AlgHom.pow_succ {R : Type u_1} {A : Type u_2} {C : Type u_4} [CommSemiring R] [CommSemiring A] [Semiring C] [Bialgebra R C] [Algebra R A] (f : C →ₐ[R] A) (n : ) :
f ^ (n + 1) = f ^ n * f
@[simp]
theorem AlgHom.one_apply' {R : Type u_1} {A : Type u_2} {C : Type u_4} [CommSemiring R] [CommSemiring A] [Semiring C] [Bialgebra R C] [Algebra R A] (c : C) :
theorem AlgHom.toLinearMap_one {R : Type u_1} {A : Type u_2} {C : Type u_4} [CommSemiring R] [CommSemiring A] [Semiring C] [Bialgebra R C] [Algebra R A] :
1 = 1
theorem AlgHom.toLinearMap_mul {R : Type u_1} {A : Type u_2} {C : Type u_4} [CommSemiring R] [CommSemiring A] [Semiring C] [Bialgebra R C] [Algebra R A] (f g : C →ₐ[R] A) :
theorem AlgHom.toLinearMap_pow {R : Type u_1} {A : Type u_2} {C : Type u_4} [CommSemiring R] [CommSemiring A] [Semiring C] [Bialgebra R C] [Algebra R A] (f : C →ₐ[R] A) (n : ) :
theorem AlgHom.mul_distrib_comp {R : Type u_1} {A : Type u_2} {B : Type u_3} {C : Type u_4} [CommSemiring R] [CommSemiring A] [CommSemiring B] [Semiring C] [Bialgebra R C] [Algebra R A] [Bialgebra R B] (f g : C →ₐ[R] A) (h : B →ₐc[R] C) :
(f * g).comp h = f.comp h * g.comp h
theorem AlgHom.comp_mul_distrib {R : Type u_1} {A : Type u_2} {B : Type u_3} {C : Type u_4} [CommSemiring R] [CommSemiring A] [CommSemiring B] [Semiring C] [Bialgebra R C] [Algebra R A] [Algebra R B] (f g : C →ₐ[R] A) (h : A →ₐ[R] B) :
h.comp (f * g) = h.comp f * h.comp g
noncomputable instance AlgHom.instMonoid_toric {R : Type u_1} {A : Type u_2} {C : Type u_4} [CommSemiring R] [CommSemiring A] [Semiring C] [Bialgebra R C] [Algebra R A] :
Equations
noncomputable instance BialgHom.instOne_toric {R : Type u_1} {A : Type u_2} {C : Type u_4} [CommSemiring R] [CommSemiring A] [CommSemiring C] [Bialgebra R A] [Bialgebra R C] :
One (C →ₐc[R] A)
Equations
@[simp]
theorem BialgHom.one_apply' {R : Type u_1} {A : Type u_2} {C : Type u_4} [CommSemiring R] [CommSemiring A] [CommSemiring C] [Bialgebra R A] [Bialgebra R C] (c : C) :
theorem BialgHom.toLinearMap_one {R : Type u_1} {A : Type u_2} {C : Type u_4} [CommSemiring R] [CommSemiring A] [CommSemiring C] [Bialgebra R A] [Bialgebra R C] :
noncomputable instance BialgHom.instMul_toric {R : Type u_1} {A : Type u_2} {C : Type u_4} [CommSemiring R] [CommSemiring A] [CommSemiring C] [Bialgebra R A] [Bialgebra R C] [Coalgebra.IsCocomm R C] :
Mul (C →ₐc[R] A)
Equations
noncomputable instance BialgHom.instPowNat_toric {R : Type u_1} {A : Type u_2} {C : Type u_4} [CommSemiring R] [CommSemiring A] [CommSemiring C] [Bialgebra R A] [Bialgebra R C] [Coalgebra.IsCocomm R C] :
Equations
theorem BialgHom.pow_succ {R : Type u_1} {A : Type u_2} {C : Type u_4} [CommSemiring R] [CommSemiring A] [CommSemiring C] [Bialgebra R A] [Bialgebra R C] [Coalgebra.IsCocomm R C] (f : C →ₐc[R] A) (n : ) :
f ^ (n + 1) = f ^ n * f
theorem BialgHom.toLinearMap_mul {R : Type u_1} {A : Type u_2} {C : Type u_4} [CommSemiring R] [CommSemiring A] [CommSemiring C] [Bialgebra R A] [Bialgebra R C] [Coalgebra.IsCocomm R C] (f g : C →ₐc[R] A) :
theorem BialgHom.toLinearMap_pow {R : Type u_1} {A : Type u_2} {C : Type u_4} [CommSemiring R] [CommSemiring A] [CommSemiring C] [Bialgebra R A] [Bialgebra R C] [Coalgebra.IsCocomm R C] (f : C →ₐc[R] A) (n : ) :
noncomputable instance BialgHom.instCommMonoid_toric {R : Type u_1} {A : Type u_2} {C : Type u_4} [CommSemiring R] [CommSemiring A] [CommSemiring C] [Bialgebra R A] [Bialgebra R C] [Coalgebra.IsCocomm R C] :
Equations