Convolution product on bialgebra homs #
This file constructs the ring structure on algebra homs C → A
where C
is a bialgebra and A
an
algebra, and also the ring structure on bialgebra homs C → A
where C
and A
are bialgebras.
Both multiplications are given by
.
/ \
f * g = f g
\ /
.
noncomputable instance
AlgHom.instOne_toric
{R : Type u_1}
{A : Type u_2}
{C : Type u_4}
[CommSemiring R]
[CommSemiring A]
[Semiring C]
[Bialgebra R C]
[Algebra R A]
:
Equations
- AlgHom.instOne_toric = { one := (Algebra.ofId R A).comp (Bialgebra.counitAlgHom R C) }
noncomputable instance
AlgHom.instMul_toric
{R : Type u_1}
{A : Type u_2}
{C : Type u_4}
[CommSemiring R]
[CommSemiring A]
[Semiring C]
[Bialgebra R C]
[Algebra R A]
:
Equations
- AlgHom.instMul_toric = { mul := fun (f g : C →ₐ[R] A) => (Algebra.TensorProduct.lmul' R).comp ((Algebra.TensorProduct.map f g).comp (Bialgebra.comulAlgHom R C)) }
theorem
AlgHom.one_def
{R : Type u_1}
{A : Type u_2}
{C : Type u_4}
[CommSemiring R]
[CommSemiring A]
[Semiring C]
[Bialgebra R C]
[Algebra R A]
:
theorem
AlgHom.mul_def
{R : Type u_1}
{A : Type u_2}
{C : Type u_4}
[CommSemiring R]
[CommSemiring A]
[Semiring C]
[Bialgebra R C]
[Algebra R A]
(f g : C →ₐ[R] A)
:
f * g = (Algebra.TensorProduct.lmul' R).comp ((Algebra.TensorProduct.map f g).comp (Bialgebra.comulAlgHom R C))
@[simp]
theorem
AlgHom.one_apply'
{R : Type u_1}
{A : Type u_2}
{C : Type u_4}
[CommSemiring R]
[CommSemiring A]
[Semiring C]
[Bialgebra R C]
[Algebra R A]
(c : C)
:
theorem
AlgHom.toLinearMap_one
{R : Type u_1}
{A : Type u_2}
{C : Type u_4}
[CommSemiring R]
[CommSemiring A]
[Semiring C]
[Bialgebra R C]
[Algebra R A]
:
theorem
AlgHom.toLinearMap_mul
{R : Type u_1}
{A : Type u_2}
{C : Type u_4}
[CommSemiring R]
[CommSemiring A]
[Semiring C]
[Bialgebra R C]
[Algebra R A]
(f g : C →ₐ[R] A)
:
theorem
AlgHom.toLinearMap_pow
{R : Type u_1}
{A : Type u_2}
{C : Type u_4}
[CommSemiring R]
[CommSemiring A]
[Semiring C]
[Bialgebra R C]
[Algebra R A]
(f : C →ₐ[R] A)
(n : ℕ)
:
noncomputable instance
AlgHom.instMonoid_toric
{R : Type u_1}
{A : Type u_2}
{C : Type u_4}
[CommSemiring R]
[CommSemiring A]
[Semiring C]
[Bialgebra R C]
[Algebra R A]
:
Equations
noncomputable instance
AlgHom.instCommMonoid_toric
{R : Type u_1}
{A : Type u_2}
{C : Type u_4}
[CommSemiring R]
[CommSemiring A]
[Semiring C]
[Bialgebra R C]
[Algebra R A]
[Coalgebra.IsCocomm R C]
:
CommMonoid (C →ₐ[R] A)
Equations
noncomputable instance
BialgHom.instOne_toric
{R : Type u_1}
{A : Type u_2}
{C : Type u_4}
[CommSemiring R]
[CommSemiring A]
[CommSemiring C]
[Bialgebra R A]
[Bialgebra R C]
:
Equations
- BialgHom.instOne_toric = { one := (Bialgebra.unitBialgHom R A).comp (Bialgebra.counitBialgHom R C) }
theorem
BialgHom.one_def
{R : Type u_1}
{A : Type u_2}
{C : Type u_4}
[CommSemiring R]
[CommSemiring A]
[CommSemiring C]
[Bialgebra R A]
[Bialgebra R C]
:
@[simp]
theorem
BialgHom.one_apply'
{R : Type u_1}
{A : Type u_2}
{C : Type u_4}
[CommSemiring R]
[CommSemiring A]
[CommSemiring C]
[Bialgebra R A]
[Bialgebra R C]
(c : C)
:
theorem
BialgHom.toLinearMap_one
{R : Type u_1}
{A : Type u_2}
{C : Type u_4}
[CommSemiring R]
[CommSemiring A]
[CommSemiring C]
[Bialgebra R A]
[Bialgebra R C]
:
noncomputable instance
BialgHom.instMul_toric
{R : Type u_1}
{A : Type u_2}
{C : Type u_4}
[CommSemiring R]
[CommSemiring A]
[CommSemiring C]
[Bialgebra R A]
[Bialgebra R C]
[Coalgebra.IsCocomm R C]
:
Equations
- BialgHom.instMul_toric = { mul := fun (f g : C →ₐc[R] A) => (Bialgebra.mulBialgHom R A).comp ((Bialgebra.TensorProduct.map f g).comp (Bialgebra.comulBialgHom R C)) }
noncomputable instance
BialgHom.instPowNat_toric
{R : Type u_1}
{A : Type u_2}
{C : Type u_4}
[CommSemiring R]
[CommSemiring A]
[CommSemiring C]
[Bialgebra R A]
[Bialgebra R C]
[Coalgebra.IsCocomm R C]
:
theorem
BialgHom.mul_def
{R : Type u_1}
{A : Type u_2}
{C : Type u_4}
[CommSemiring R]
[CommSemiring A]
[CommSemiring C]
[Bialgebra R A]
[Bialgebra R C]
[Coalgebra.IsCocomm R C]
(f g : C →ₐc[R] A)
:
f * g = (Bialgebra.mulBialgHom R A).comp ((Bialgebra.TensorProduct.map f g).comp (Bialgebra.comulBialgHom R C))
theorem
BialgHom.pow_succ
{R : Type u_1}
{A : Type u_2}
{C : Type u_4}
[CommSemiring R]
[CommSemiring A]
[CommSemiring C]
[Bialgebra R A]
[Bialgebra R C]
[Coalgebra.IsCocomm R C]
(f : C →ₐc[R] A)
(n : ℕ)
:
theorem
BialgHom.toLinearMap_mul
{R : Type u_1}
{A : Type u_2}
{C : Type u_4}
[CommSemiring R]
[CommSemiring A]
[CommSemiring C]
[Bialgebra R A]
[Bialgebra R C]
[Coalgebra.IsCocomm R C]
(f g : C →ₐc[R] A)
:
theorem
BialgHom.toLinearMap_pow
{R : Type u_1}
{A : Type u_2}
{C : Type u_4}
[CommSemiring R]
[CommSemiring A]
[CommSemiring C]
[Bialgebra R A]
[Bialgebra R C]
[Coalgebra.IsCocomm R C]
(f : C →ₐc[R] A)
(n : ℕ)
:
noncomputable instance
BialgHom.instCommMonoid_toric
{R : Type u_1}
{A : Type u_2}
{C : Type u_4}
[CommSemiring R]
[CommSemiring A]
[CommSemiring C]
[Bialgebra R A]
[Bialgebra R C]
[Coalgebra.IsCocomm R C]
:
CommMonoid (C →ₐc[R] A)
Equations
- BialgHom.instCommMonoid_toric = Function.Injective.commMonoid (fun (x : C →ₐc[R] A) => ↑x) ⋯ ⋯ ⋯ ⋯