Documentation

Toric.Mathlib.RingTheory.Coalgebra.CoassocSimps

Tactic to reassociate comultiplication in a coalgebra #

theorem Coalgebra.comp_assoc_symm {R : Type u_1} {M : Type u_3} {N : Type u_4} {P : Type u_5} {Q : Type u_9} [CommSemiring R] [AddCommMonoid M] [Module R M] [AddCommMonoid N] [Module R N] [AddCommMonoid P] [Module R P] [AddCommMonoid Q] [Module R Q] (f₁ : M →ₗ[R] N) (f₂ : N →ₗ[R] P) (f₃ : P →ₗ[R] Q) :
f₃ ∘ₗ f₂ ∘ₗ f₁ = (f₃ ∘ₗ f₂) ∘ₗ f₁
theorem Coalgebra.map_comp_left {R : Type u_1} {M : Type u_3} {N : Type u_4} {P : Type u_5} {M' : Type u_6} {N' : Type u_7} [CommSemiring R] [AddCommMonoid M] [Module R M] [AddCommMonoid N] [Module R N] [AddCommMonoid P] [Module R P] [AddCommMonoid M'] [Module R M'] [AddCommMonoid N'] [Module R N'] (f₁ : M →ₗ[R] N) (f₂ : N →ₗ[R] P) (g : M' →ₗ[R] N') :
theorem Coalgebra.map_comp_right {R : Type u_1} {M : Type u_3} {N : Type u_4} {P : Type u_5} {M' : Type u_6} {N' : Type u_7} [CommSemiring R] [AddCommMonoid M] [Module R M] [AddCommMonoid N] [Module R N] [AddCommMonoid P] [Module R P] [AddCommMonoid M'] [Module R M'] [AddCommMonoid N'] [Module R N'] (f₁ : M →ₗ[R] N) (f₂ : N →ₗ[R] P) (g : M' →ₗ[R] N') :
theorem Coalgebra.map_map {R : Type u_1} {M : Type u_3} {N : Type u_4} {P : Type u_5} {M' : Type u_6} {N' : Type u_7} {P' : Type u_8} [CommSemiring R] [AddCommMonoid M] [Module R M] [AddCommMonoid N] [Module R N] [AddCommMonoid P] [Module R P] [AddCommMonoid M'] [Module R M'] [AddCommMonoid N'] [Module R N'] [AddCommMonoid P'] [Module R P'] (f₁ : M →ₗ[R] N) (f₂ : N →ₗ[R] P) (g₁ : M' →ₗ[R] N') (g₂ : N' →ₗ[R] P') :
TensorProduct.map f₂ g₂ ∘ₗ TensorProduct.map f₁ g₁ = TensorProduct.map (f₂ ∘ₗ f₁) (g₂ ∘ₗ g₁)
theorem Coalgebra.map_map_assoc {R : Type u_1} {M : Type u_3} {N : Type u_4} {P : Type u_5} {M' : Type u_6} {N' : Type u_7} {P' : Type u_8} {Q : Type u_9} [CommSemiring R] [AddCommMonoid M] [Module R M] [AddCommMonoid N] [Module R N] [AddCommMonoid P] [Module R P] [AddCommMonoid M'] [Module R M'] [AddCommMonoid N'] [Module R N'] [AddCommMonoid P'] [Module R P'] [AddCommMonoid Q] [Module R Q] (f₁ : M →ₗ[R] N) (f₂ : N →ₗ[R] P) (g₁ : M' →ₗ[R] N') (g₂ : N' →ₗ[R] P') (h : TensorProduct R P P' →ₗ[R] Q) :
(h ∘ₗ TensorProduct.map f₂ g₂) ∘ₗ TensorProduct.map f₁ g₁ = h ∘ₗ TensorProduct.map (f₂ ∘ₗ f₁) (g₂ ∘ₗ g₁)
theorem Coalgebra.map_map_comp_assoc_eq_assoc {R : Type u_1} {M : Type u_3} {N : Type u_4} {P : Type u_5} {M' : Type u_6} {N' : Type u_7} {P' : Type u_8} {Q : Type u_9} [CommSemiring R] [AddCommMonoid M] [Module R M] [AddCommMonoid N] [Module R N] [AddCommMonoid P] [Module R P] [AddCommMonoid M'] [Module R M'] [AddCommMonoid N'] [Module R N'] [AddCommMonoid P'] [Module R P'] [AddCommMonoid Q] [Module R Q] (f : M →ₗ[R] M') (g : N →ₗ[R] N') (h : P →ₗ[R] P') (i : TensorProduct R M' (TensorProduct R N' P') →ₗ[R] Q) :
theorem Coalgebra.map_map_comp_assoc_eq_assoc' {R : Type u_1} {M : Type u_3} {N : Type u_4} {P : Type u_5} {M' : Type u_6} {N' : Type u_7} {P' : Type u_8} {Q : Type u_9} {Q' : Type u_10} [CommSemiring R] [AddCommMonoid M] [Module R M] [AddCommMonoid N] [Module R N] [AddCommMonoid P] [Module R P] [AddCommMonoid M'] [Module R M'] [AddCommMonoid N'] [Module R N'] [AddCommMonoid P'] [Module R P'] [AddCommMonoid Q] [Module R Q] [AddCommMonoid Q'] [Module R Q'] (f : M →ₗ[R] M') (g : N →ₗ[R] N') (h : P →ₗ[R] P') (i₁ : TensorProduct R M' Q' →ₗ[R] Q) (i₂ : TensorProduct R N' P' →ₗ[R] Q') :
theorem Coalgebra.map_map_comp_assoc_eq_assoc'' {R : Type u_1} {M : Type u_3} {N : Type u_4} {P : Type u_5} {M' : Type u_6} {N' : Type u_7} {P' : Type u_8} {Q' : Type u_10} [CommSemiring R] [AddCommMonoid M] [Module R M] [AddCommMonoid N] [Module R N] [AddCommMonoid P] [Module R P] [AddCommMonoid M'] [Module R M'] [AddCommMonoid N'] [Module R N'] [AddCommMonoid P'] [Module R P'] [AddCommMonoid Q'] [Module R Q'] (f : M →ₗ[R] M') (g : N →ₗ[R] N') (h : P →ₗ[R] P') (i₂ : TensorProduct R N' P' →ₗ[R] Q') :
theorem Coalgebra.map_map_comp_assoc_symm_eq_assoc {R : Type u_1} {M : Type u_3} {N : Type u_4} {P : Type u_5} {M' : Type u_6} {N' : Type u_7} {P' : Type u_8} {Q : Type u_9} [CommSemiring R] [AddCommMonoid M] [Module R M] [AddCommMonoid N] [Module R N] [AddCommMonoid P] [Module R P] [AddCommMonoid M'] [Module R M'] [AddCommMonoid N'] [Module R N'] [AddCommMonoid P'] [Module R P'] [AddCommMonoid Q] [Module R Q] (f : M →ₗ[R] M') (g : N →ₗ[R] N') (h : P →ₗ[R] P') (i : TensorProduct R (TensorProduct R M' N') P' →ₗ[R] Q) :
theorem Coalgebra.map_map_comp_assoc_symm_eq_assoc' {R : Type u_1} {M : Type u_3} {N : Type u_4} {P : Type u_5} {M' : Type u_6} {N' : Type u_7} {P' : Type u_8} {Q : Type u_9} {Q' : Type u_10} [CommSemiring R] [AddCommMonoid M] [Module R M] [AddCommMonoid N] [Module R N] [AddCommMonoid P] [Module R P] [AddCommMonoid M'] [Module R M'] [AddCommMonoid N'] [Module R N'] [AddCommMonoid P'] [Module R P'] [AddCommMonoid Q] [Module R Q] [AddCommMonoid Q'] [Module R Q'] (f : M →ₗ[R] M') (g : N →ₗ[R] N') (h : P →ₗ[R] P') (i₁ : TensorProduct R Q' P' →ₗ[R] Q) (i₂ : TensorProduct R M' N' →ₗ[R] Q') :
theorem Coalgebra.map_map_comp_assoc_symm_eq_assoc'' {R : Type u_1} {M : Type u_3} {N : Type u_4} {P : Type u_5} {M' : Type u_6} {N' : Type u_7} {P' : Type u_8} {Q' : Type u_10} [CommSemiring R] [AddCommMonoid M] [Module R M] [AddCommMonoid N] [Module R N] [AddCommMonoid P] [Module R P] [AddCommMonoid M'] [Module R M'] [AddCommMonoid N'] [Module R N'] [AddCommMonoid P'] [Module R P'] [AddCommMonoid Q'] [Module R Q'] (f : M →ₗ[R] M') (g : N →ₗ[R] N') (h : P →ₗ[R] P') (i₂ : TensorProduct R M' N' →ₗ[R] Q') :

coassoc_simps reassociates attempts to replace x by x₁ ⊗ₜ x₂ via linearity. This is an implementation detail that is used to set up tensor products of coalgebras, bialgebras, and hopf algebras, and shouldn't be relied on downstream.

Equations
Instances For