Documentation

Toric.Mathlib.RingTheory.HopfAlgebra.Convolution

Convolution product on Hopf algebra maps #

This file constructs the ring structure on bialgebra homs C → A where C and A are Hopf algebras and multiplication is given by

         .
        / \
f * g = f g
        \ /
         .
theorem HopfAlgebra.antipode_mul_antidistrib {R : Type u_1} {A : Type u_2} [CommSemiring R] [CommSemiring A] [HopfAlgebra R A] (a b : A) :
(antipode R) (a * b) = (antipode R) b * (antipode R) a
theorem HopfAlgebra.antipode_mul_distrib {R : Type u_1} {A : Type u_2} [CommSemiring R] [CommSemiring A] [HopfAlgebra R A] (a b : A) :
(antipode R) (a * b) = (antipode R) a * (antipode R) b
theorem HopfAlgebra.antipode_mul {R : Type u_1} {A : Type u_2} [CommSemiring R] [CommSemiring A] [HopfAlgebra R A] (a b : A) :
(antipode R) (a * b) = (antipode R) a * (antipode R) b

Alias of HopfAlgebra.antipode_mul_distrib.

noncomputable def HopfAlgebra.antipodeAlgHom (R : Type u_1) (A : Type u_2) [CommSemiring R] [CommSemiring A] [HopfAlgebra R A] :

The antipode of a commutative Hopf algebra as an algebra hom.

Equations
Instances For
    @[simp]
    theorem HopfAlgebra.antipodeAlgHom_apply (R : Type u_1) (A : Type u_2) [CommSemiring R] [CommSemiring A] [HopfAlgebra R A] (a : A) :
    (antipodeAlgHom R A) a = (antipode R) a
    noncomputable def BialgHom.antipodeBialgHom {R : Type u_1} {C : Type u_3} [CommSemiring R] [CommSemiring C] [HopfAlgebra R C] :

    The antipode of a commutative cocommutative Hopf algebra as a coalgebra hom.

    Equations
    Instances For
      noncomputable instance BialgHom.instInv_toric {R : Type u_1} {A : Type u_2} {C : Type u_3} [CommSemiring R] [CommSemiring A] [CommSemiring C] [HopfAlgebra R A] [HopfAlgebra R C] :
      Inv (C →ₐc[R] A)
      Equations
      theorem BialgHom.inv_def {R : Type u_1} {A : Type u_2} {C : Type u_3} [CommSemiring R] [CommSemiring A] [CommSemiring C] [HopfAlgebra R A] [HopfAlgebra R C] [Coalgebra.IsCocomm R C] (f : C →ₐc[R] A) :
      @[simp]
      theorem BialgHom.inv_apply {R : Type u_1} {A : Type u_2} {C : Type u_3} [CommSemiring R] [CommSemiring A] [CommSemiring C] [HopfAlgebra R A] [HopfAlgebra R C] [Coalgebra.IsCocomm R C] (f : C →ₐc[R] A) (c : C) :
      noncomputable instance BialgHom.instCommGroup_toric {R : Type u_1} {A : Type u_2} {C : Type u_3} [CommSemiring R] [CommSemiring A] [CommSemiring C] [HopfAlgebra R A] [HopfAlgebra R C] [Coalgebra.IsCocomm R C] :
      Equations
      • One or more equations did not get rendered due to their size.