Convolution product on Hopf algebra maps #
This file constructs the ring structure on bialgebra homs C → A where C and A are Hopf
algebras and multiplication is given by
.
/ \
f * g = f g
\ /
.
theorem
HopfAlgebra.antipode_mul_antidistrib
{R : Type u_1}
{A : Type u_2}
[CommSemiring R]
[CommSemiring A]
[HopfAlgebra R A]
(a b : A)
:
theorem
HopfAlgebra.antipode_mul_distrib
{R : Type u_1}
{A : Type u_2}
[CommSemiring R]
[CommSemiring A]
[HopfAlgebra R A]
(a b : A)
:
theorem
HopfAlgebra.antipode_mul
{R : Type u_1}
{A : Type u_2}
[CommSemiring R]
[CommSemiring A]
[HopfAlgebra R A]
(a b : A)
:
Alias of HopfAlgebra.antipode_mul_distrib.
noncomputable def
HopfAlgebra.antipodeAlgHom
(R : Type u_1)
(A : Type u_2)
[CommSemiring R]
[CommSemiring A]
[HopfAlgebra R A]
:
The antipode of a commutative Hopf algebra as an algebra hom.
Equations
Instances For
@[simp]
theorem
HopfAlgebra.antipodeAlgHom_apply
(R : Type u_1)
(A : Type u_2)
[CommSemiring R]
[CommSemiring A]
[HopfAlgebra R A]
(a : A)
:
@[simp]
theorem
HopfAlgebra.toLinearMap_antipodeAlgHom
{R : Type u_1}
{A : Type u_2}
[CommSemiring R]
[CommSemiring A]
[HopfAlgebra R A]
:
@[simp]
theorem
LinearMap.antipode_mul_id
{R : Type u_1}
{C : Type u_3}
[CommSemiring R]
[Semiring C]
[HopfAlgebra R C]
:
@[simp]
theorem
LinearMap.id_mul_antipode
{R : Type u_1}
{C : Type u_3}
[CommSemiring R]
[Semiring C]
[HopfAlgebra R C]
:
theorem
LinearMap.comul_right_inv
{R : Type u_1}
{C : Type u_3}
[CommSemiring R]
[Semiring C]
[HopfAlgebra R C]
:
theorem
AlgHom.antipode_id_cancel
{R : Type u_1}
{A : Type u_2}
[CommSemiring R]
[CommSemiring A]
[HopfAlgebra R A]
:
theorem
AlgHom.counitAlgHom_comp_antipodeAlgHom
{R : Type u_1}
{A : Type u_2}
[CommSemiring R]
[CommSemiring A]
[HopfAlgebra R A]
:
noncomputable def
BialgHom.antipodeBialgHom
{R : Type u_1}
{C : Type u_3}
[CommSemiring R]
[CommSemiring C]
[HopfAlgebra R C]
:
The antipode of a commutative cocommutative Hopf algebra as a coalgebra hom.
Equations
- BialgHom.antipodeBialgHom = { toFun := (↑↑(HopfAlgebra.antipodeAlgHom R C).toRingHom).toFun, map_add' := ⋯, map_smul' := ⋯, counit_comp := ⋯, map_comp_comul := ⋯, map_one' := ⋯, map_mul' := ⋯ }
Instances For
noncomputable instance
BialgHom.instInv_toric
{R : Type u_1}
{A : Type u_2}
{C : Type u_3}
[CommSemiring R]
[CommSemiring A]
[CommSemiring C]
[HopfAlgebra R A]
[HopfAlgebra R C]
:
Equations
theorem
BialgHom.inv_def
{R : Type u_1}
{A : Type u_2}
{C : Type u_3}
[CommSemiring R]
[CommSemiring A]
[CommSemiring C]
[HopfAlgebra R A]
[HopfAlgebra R C]
[Coalgebra.IsCocomm R C]
(f : C →ₐc[R] A)
:
@[simp]
theorem
BialgHom.inv_apply
{R : Type u_1}
{A : Type u_2}
{C : Type u_3}
[CommSemiring R]
[CommSemiring A]
[CommSemiring C]
[HopfAlgebra R A]
[HopfAlgebra R C]
[Coalgebra.IsCocomm R C]
(f : C →ₐc[R] A)
(c : C)
:
noncomputable instance
BialgHom.instCommGroup_toric
{R : Type u_1}
{A : Type u_2}
{C : Type u_3}
[CommSemiring R]
[CommSemiring A]
[CommSemiring C]
[HopfAlgebra R A]
[HopfAlgebra R C]
[Coalgebra.IsCocomm R C]
:
Equations
- One or more equations did not get rendered due to their size.