@[simp]
theorem
Algebra.TensorProduct.map_comp_includeLeftRingHom
{R : Type u_1}
{S : Type u_2}
{A : Type u_3}
{B : Type u_4}
{C : Type u_5}
{D : Type u_6}
[CommSemiring R]
[CommSemiring S]
[Algebra R S]
[Semiring A]
[Algebra R A]
[Algebra S A]
[IsScalarTower R S A]
[Semiring B]
[Algebra R B]
[Semiring C]
[Algebra R C]
[Algebra S C]
[IsScalarTower R S C]
[Semiring D]
[Algebra R D]
(f : A →ₐ[S] C)
(g : B →ₐ[R] D)
:
@[simp]
theorem
Algebra.TensorProduct.rid_comp_includeLeftRingHom
{R : Type u_1}
{S : Type u_2}
{A : Type u_3}
[CommSemiring R]
[CommSemiring S]
[Algebra R S]
[Semiring A]
[Algebra R A]
[Algebra S A]
[IsScalarTower R S A]
:
noncomputable def
Algebra.TensorProduct.mapRingHom
{R : Type u_1}
{S : Type u_2}
{T : Type u_3}
{R' : Type u_4}
{S' : Type u_5}
{T' : Type u_6}
[CommSemiring R]
[CommSemiring S]
[CommSemiring T]
[Algebra R S]
[Algebra R T]
[CommSemiring R']
[CommSemiring S']
[CommSemiring T']
[Algebra R' S']
[Algebra R' T']
(fR : R →+* R')
(fS : S →+* S')
(fT : T →+* T')
(HS : fS.comp (algebraMap R S) = (algebraMap R' S').comp fR)
(HT : fT.comp (algebraMap R T) = (algebraMap R' T').comp fR)
:
Heterobasic version of Algebra.TensorProduct.map as a ring homomorphism.
Equations
- One or more equations did not get rendered due to their size.
Instances For
@[simp]
theorem
Algebra.TensorProduct.mapRingHom_tmul
{R : Type u_1}
{S : Type u_2}
{T : Type u_3}
{R' : Type u_4}
{S' : Type u_5}
{T' : Type u_6}
[CommSemiring R]
[CommSemiring S]
[CommSemiring T]
[Algebra R S]
[Algebra R T]
[CommSemiring R']
[CommSemiring S']
[CommSemiring T']
[Algebra R' S']
[Algebra R' T']
(fR : R →+* R')
(fS : S →+* S')
(fT : T →+* T')
(HS : fS.comp (algebraMap R S) = (algebraMap R' S').comp fR)
(HT : fT.comp (algebraMap R T) = (algebraMap R' T').comp fR)
(s : S)
(t : T)
:
@[simp]
theorem
Algebra.TensorProduct.mapRingHom_comp_includeLeftRingHom
{R : Type u_1}
{S : Type u_2}
{T : Type u_3}
{R' : Type u_4}
{S' : Type u_5}
{T' : Type u_6}
[CommSemiring R]
[CommSemiring S]
[CommSemiring T]
[Algebra R S]
[Algebra R T]
[CommSemiring R']
[CommSemiring S']
[CommSemiring T']
[Algebra R' S']
[Algebra R' T']
(fR : R →+* R')
(fS : S →+* S')
(fT : T →+* T')
(HS : fS.comp (algebraMap R S) = (algebraMap R' S').comp fR)
(HT : fT.comp (algebraMap R T) = (algebraMap R' T').comp fR)
:
@[simp]
theorem
Algebra.TensorProduct.mapRingHom_comp_includeRight
{R : Type u_1}
{S : Type u_2}
{T : Type u_3}
{R' : Type u_4}
{S' : Type u_5}
{T' : Type u_6}
[CommSemiring R]
[CommSemiring S]
[CommSemiring T]
[Algebra R S]
[Algebra R T]
[CommSemiring R']
[CommSemiring S']
[CommSemiring T']
[Algebra R' S']
[Algebra R' T']
(fR : R →+* R')
(fS : S →+* S')
(fT : T →+* T')
(HS : fS.comp (algebraMap R S) = (algebraMap R' S').comp fR)
(HT : fT.comp (algebraMap R T) = (algebraMap R' T').comp fR)
: