Toric ideals #
This file defines toric ideals.
def
AddMonoidAlgebra.monoidIdeal
{M : Type u_1}
{G : Type u_2}
{R : Type u_3}
[AddCommMonoid M]
[AddCommGroup G]
(f : ⊤.LocalizationMap G)
(s : AddSubmonoid G)
[CommRing R]
:
Ideal (AddMonoidAlgebra R M)
The monoid ideal corresponding to a submonoid s of the Grothendieck group of a monoid is an
ideal generated by binomials whose exponents differ by an element of s.
Equations
- One or more equations did not get rendered due to their size.
Instances For
theorem
AddMonoidAlgebra.monoidIdeal_comap
{M : Type u_1}
{G : Type u_2}
{R : Type u_3}
{H : Type u_5}
[AddCommMonoid M]
[AddCommGroup G]
[AddCommGroup H]
(f : ⊤.LocalizationMap G)
(g : ⊤.LocalizationMap H)
(s : AddSubmonoid G)
[CommRing R]
:
class
AddMonoidAlgebra.IsToricIdeal
{M : Type u_1}
{R : Type u_3}
[AddCommMonoid M]
[CommRing R]
(I : Ideal (AddMonoidAlgebra R M))
extends I.IsPrime :
An ideal is toric if it's prime and a group ideal.
- exists_monoidIdeal_eq' : ∃ (s : AddSubgroup (AddLocalization ⊤)), monoidIdeal (AddLocalization.addMonoidOf ⊤) s.toAddSubmonoid = I
Use
IsToricIdeal.exists_monoidIdeal_eqinstead.
Instances
theorem
AddMonoidAlgebra.isToricIdeal_iff_exists_monoidIdeal_eq'
{M : Type u_1}
{R : Type u_3}
[AddCommMonoid M]
[CommRing R]
(I : Ideal (AddMonoidAlgebra R M))
:
IsToricIdeal I ↔ I.IsPrime ∧ ∃ (s : AddSubgroup (AddLocalization ⊤)), monoidIdeal (AddLocalization.addMonoidOf ⊤) s.toAddSubmonoid = I
theorem
AddMonoidAlgebra.isToricIdeal_iff_exists_monoidIdeal_eq
{M : Type u_1}
{G : Type u_2}
{R : Type u_3}
[AddCommMonoid M]
[AddCommGroup G]
(f : ⊤.LocalizationMap G)
[CommRing R]
{I : Ideal (AddMonoidAlgebra R M)}
:
theorem
AddMonoidAlgebra.IsToricIdeal.of_exists_monoidIdeal_eq
{M : Type u_1}
{G : Type u_2}
{R : Type u_3}
[AddCommMonoid M]
[AddCommGroup G]
(f : ⊤.LocalizationMap G)
[CommRing R]
{I : Ideal (AddMonoidAlgebra R M)}
:
(I.IsPrime ∧ ∃ (s : AddSubgroup G), monoidIdeal f s.toAddSubmonoid = I) → IsToricIdeal I
Alias of the reverse direction of AddMonoidAlgebra.isToricIdeal_iff_exists_monoidIdeal_eq.
theorem
AddMonoidAlgebra.IsToricIdeal.exists_monoidIdeal_eq
{M : Type u_1}
{G : Type u_2}
{R : Type u_3}
[AddCommMonoid M]
[AddCommGroup G]
(f : ⊤.LocalizationMap G)
[CommRing R]
{I : Ideal (AddMonoidAlgebra R M)}
:
IsToricIdeal I → I.IsPrime ∧ ∃ (s : AddSubgroup G), monoidIdeal f s.toAddSubmonoid = I
Alias of the forward direction of AddMonoidAlgebra.isToricIdeal_iff_exists_monoidIdeal_eq.
theorem
AddMonoidAlgebra.isToricIdeal_iff_exists_span_single_sub_single
{M : Type u_1}
{k : Type u_4}
[AddCommMonoid M]
[Field k]
[IsAlgClosed k]
{I : Ideal (AddMonoidAlgebra k M)}
: