ZMod n and quotient groups / rings #
This file relates ZMod n to the quotient ring ℤ ⧸ Ideal.span {(n : ℤ)}.
Main definitions #
ZMod.quotient_span_nat_equiv_zmodandZMod.quotientSpanEquivZMod:ZMod nis the ring quotient ofℤbyn ℤ : Ideal.span {n}(wheren : ℕandn : ℤrespectively)
Tags #
zmod, quotient ring, ideal quotient
@[simp]
@[simp]
theorem
Int.quotientSpanNatEquivZMod_comp_castRingHom
(n : ℕ)
:
(↑(quotientSpanNatEquivZMod n).symm).comp (castRingHom (ZMod n)) = Ideal.Quotient.mk (Ideal.span {↑n})
@[simp]
@[simp]
theorem
Int.quotientSpanEquivZMod_comp_castRingHom
(n : ℤ)
:
(↑n.quotientSpanEquivZMod.symm).comp (castRingHom (ZMod n.natAbs)) = Ideal.Quotient.mk (Ideal.span {n})
def
ZMod.prodEquivPi
{ι : Type u_3}
[Fintype ι]
(a : ι → ℕ)
(coprime : Pairwise (Function.onFun Nat.Coprime a))
:
The Chinese remainder theorem, elementary version for ZMod. See also
Mathlib/Data/ZMod/Basic.lean for versions involving only two numbers.
Equations
- One or more equations did not get rendered due to their size.