Documentation

Mathlib.RingTheory.Ideal.Quotient.Operations

More operations on modules and ideals related to quotients #

Main results: #

def RingHom.kerLift {R : Type u} {S : Type v} [Ring R] [Semiring S] (f : R →+* S) :
R ker f →+* S

The induced map from the quotient by the kernel to the codomain.

This is an isomorphism if f has a right inverse (quotientKerEquivOfRightInverse) / is surjective (quotientKerEquivOfSurjective).

Equations
@[simp]
theorem RingHom.kerLift_mk {R : Type u} {S : Type v} [Ring R] [Semiring S] (f : R →+* S) (r : R) :
f.kerLift ((Ideal.Quotient.mk (ker f)) r) = f r
theorem RingHom.lift_injective_of_ker_le_ideal {R : Type u} {S : Type v} [Ring R] [Semiring S] (I : Ideal R) [I.IsTwoSided] {f : R →+* S} (H : aI, f a = 0) (hI : ker f I) :
theorem RingHom.kerLift_injective {R : Type u} {S : Type v} [Ring R] [Semiring S] (f : R →+* S) :

The induced map from the quotient by the kernel is injective.

def RingHom.quotientKerEquivOfRightInverse {R : Type u} {S : Type v} [Ring R] [Semiring S] {f : R →+* S} {g : SR} (hf : Function.RightInverse g f) :
R ker f ≃+* S

The first isomorphism theorem for commutative rings, computable version.

Equations
@[simp]
theorem RingHom.quotientKerEquivOfRightInverse.apply {R : Type u} {S : Type v} [Ring R] [Semiring S] {f : R →+* S} {g : SR} (hf : Function.RightInverse g f) (x : R ker f) :
@[simp]
theorem RingHom.quotientKerEquivOfRightInverse.Symm.apply {R : Type u} {S : Type v} [Ring R] [Semiring S] {f : R →+* S} {g : SR} (hf : Function.RightInverse g f) (x : S) :

The quotient of a ring by he zero ideal is isomorphic to the ring itself.

Equations
noncomputable def RingHom.quotientKerEquivOfSurjective {R : Type u} {S : Type v} [Ring R] [Semiring S] {f : R →+* S} (hf : Function.Surjective f) :
R ker f ≃+* S

The first isomorphism theorem for commutative rings, surjective case.

Equations
noncomputable def RingHom.quotientKerEquivRangeS {R : Type u} {S : Type v} [Ring R] [Semiring S] (f : R →+* S) :
R ker f ≃+* f.rangeS

The first isomorphism theorem for commutative rings (RingHom.rangeS version).

Equations
noncomputable def RingHom.quotientKerEquivRange {R : Type u} [Ring R] {S : Type v} [Ring S] (f : R →+* S) :
R ker f ≃+* f.range

The first isomorphism theorem for commutative rings (RingHom.range version).

Equations
@[simp]
theorem Ideal.map_quotient_self {R : Type u} [Ring R] (I : Ideal R) [I.IsTwoSided] :
@[simp]
theorem Ideal.mk_ker {R : Type u} [Ring R] {I : Ideal R} [I.IsTwoSided] :
theorem Ideal.map_mk_eq_bot_of_le {R : Type u} [Ring R] {I J : Ideal R} [J.IsTwoSided] (h : I J) :
theorem Ideal.ker_quotient_lift {R : Type u} {S : Type v} [Ring R] [Semiring S] {I : Ideal R} [I.IsTwoSided] (f : R →+* S) (H : I RingHom.ker f) :
theorem Ideal.injective_lift_iff {R : Type u} {S : Type v} [Ring R] [Semiring S] {I : Ideal R} [I.IsTwoSided] {f : R →+* S} (H : aI, f a = 0) :
theorem Ideal.ker_Pi_Quotient_mk {R : Type u} [Ring R] {ι : Type u_1} (I : ιIdeal R) [∀ (i : ι), (I i).IsTwoSided] :
RingHom.ker (Pi.ringHom fun (i : ι) => Quotient.mk (I i)) = ⨅ (i : ι), I i
@[simp]
theorem Ideal.mem_quotient_iff_mem_sup {R : Type u} [Ring R] {I J : Ideal R} [I.IsTwoSided] {x : R} :

See also Ideal.mem_quotient_iff_mem in case I ≤ J.

theorem Ideal.mem_quotient_iff_mem {R : Type u} [Ring R] {I J : Ideal R} [I.IsTwoSided] (hIJ : I J) {x : R} :

See also Ideal.mem_quotient_iff_mem_sup if the assumption I ≤ J is not available.

def Ideal.quotientInfToPiQuotient {R : Type u} [Ring R] {ι : Type u_1} (I : ιIdeal R) [∀ (i : ι), (I i).IsTwoSided] :
R ⨅ (i : ι), I i →+* (i : ι) → R I i

The homomorphism from R/(⋂ i, f i) to ∏ i, (R / f i) featured in the Chinese Remainder Theorem. It is bijective if the ideals f i are coprime.

Equations
theorem Ideal.quotientInfToPiQuotient_mk {R : Type u} [Ring R] {ι : Type u_1} (I : ιIdeal R) [∀ (i : ι), (I i).IsTwoSided] (x : R) :
(quotientInfToPiQuotient I) ((Quotient.mk (⨅ (i : ι), I i)) x) = fun (i : ι) => (Quotient.mk (I i)) x
theorem Ideal.quotientInfToPiQuotient_mk' {R : Type u} [Ring R] {ι : Type u_1} (I : ιIdeal R) [∀ (i : ι), (I i).IsTwoSided] (x : R) (i : ι) :
(quotientInfToPiQuotient I) ((Quotient.mk (⨅ (i : ι), I i)) x) i = (Quotient.mk (I i)) x
theorem Ideal.quotientInfToPiQuotient_inj {R : Type u} [Ring R] {ι : Type u_1} (I : ιIdeal R) [∀ (i : ι), (I i).IsTwoSided] :
noncomputable def Ideal.quotientInfRingEquivPiQuotient {R : Type u_2} [CommRing R] {ι : Type u_3} [Finite ι] (f : ιIdeal R) (hf : Pairwise (Function.onFun IsCoprime f)) :
R ⨅ (i : ι), f i ≃+* ((i : ι) → R f i)

Chinese Remainder Theorem. Eisenbud Ex.2.6. Similar to Atiyah-Macdonald 1.10 and Stacks 00DT

Equations
theorem Ideal.pi_quotient_surjective {R : Type u_2} [CommRing R] {ι : Type u_3} [Finite ι] {I : ιIdeal R} (hf : Pairwise fun (i j : ι) => IsCoprime (I i) (I j)) (x : (i : ι) → R I i) :
∃ (r : R), ∀ (i : ι), (Quotient.mk (I i)) r = x i

Corollary of Chinese Remainder Theorem: if Iᵢ are pairwise coprime ideals in a commutative ring then the canonical map R → ∏ (R ⧸ Iᵢ) is surjective.

theorem Ideal.exists_forall_sub_mem_ideal {R : Type u_2} [CommRing R] {ι : Type u_3} [Finite ι] {I : ιIdeal R} (hI : Pairwise fun (i j : ι) => IsCoprime (I i) (I j)) (x : ιR) :
∃ (r : R), ∀ (i : ι), r - x i I i

Corollary of Chinese Remainder Theorem: if Iᵢ are pairwise coprime ideals in a commutative ring then given elements xᵢ you can find r with r - xᵢ ∈ Iᵢ for all i.

noncomputable def Ideal.quotientInfEquivQuotientProd {R : Type u_2} [CommRing R] (I J : Ideal R) (coprime : IsCoprime I J) :
R I J ≃+* (R I) × R J

Chinese remainder theorem, specialized to two ideals.

Equations
@[simp]
theorem Ideal.quotientInfEquivQuotientProd_fst {R : Type u_2} [CommRing R] (I J : Ideal R) (coprime : IsCoprime I J) (x : R I J) :
((I.quotientInfEquivQuotientProd J coprime) x).1 = (Quotient.factor ) x
@[simp]
theorem Ideal.quotientInfEquivQuotientProd_snd {R : Type u_2} [CommRing R] (I J : Ideal R) (coprime : IsCoprime I J) (x : R I J) :
((I.quotientInfEquivQuotientProd J coprime) x).2 = (Quotient.factor ) x
@[simp]
theorem Ideal.fst_comp_quotientInfEquivQuotientProd {R : Type u_2} [CommRing R] (I J : Ideal R) (coprime : IsCoprime I J) :
@[simp]
theorem Ideal.snd_comp_quotientInfEquivQuotientProd {R : Type u_2} [CommRing R] (I J : Ideal R) (coprime : IsCoprime I J) :
noncomputable def Ideal.quotientMulEquivQuotientProd {R : Type u_2} [CommRing R] (I J : Ideal R) (coprime : IsCoprime I J) :
R I * J ≃+* (R I) × R J

Chinese remainder theorem, specialized to two ideals.

Equations
@[simp]
theorem Ideal.quotientMulEquivQuotientProd_fst {R : Type u_2} [CommRing R] (I J : Ideal R) (coprime : IsCoprime I J) (x : R I * J) :
((I.quotientMulEquivQuotientProd J coprime) x).1 = (Quotient.factor ) x
@[simp]
theorem Ideal.quotientMulEquivQuotientProd_snd {R : Type u_2} [CommRing R] (I J : Ideal R) (coprime : IsCoprime I J) (x : R I * J) :
((I.quotientMulEquivQuotientProd J coprime) x).2 = (Quotient.factor ) x
@[simp]
theorem Ideal.fst_comp_quotientMulEquivQuotientProd {R : Type u_2} [CommRing R] (I J : Ideal R) (coprime : IsCoprime I J) :
@[simp]
theorem Ideal.snd_comp_quotientMulEquivQuotientProd {R : Type u_2} [CommRing R] (I J : Ideal R) (coprime : IsCoprime I J) :
instance Ideal.Quotient.algebra (R₁ : Type u_1) {A : Type u_3} [CommSemiring R₁] [Ring A] [Algebra R₁ A] {I : Ideal A} [I.IsTwoSided] :
Algebra R₁ (A I)

The R₁-algebra structure on A/I for an R₁-algebra A

Equations
instance Ideal.instAlgebraQuotient (R₁ : Type u_1) [CommSemiring R₁] {A : Type u_5} [CommRing A] [Algebra R₁ A] (I : Ideal A) :
Algebra R₁ (A I)
Equations
instance Ideal.Quotient.isScalarTower (R₁ : Type u_1) (R₂ : Type u_2) {A : Type u_3} [CommSemiring R₁] [CommSemiring R₂] [Ring A] [Algebra R₁ A] [Algebra R₂ A] [SMul R₁ R₂] [IsScalarTower R₁ R₂ A] (I : Ideal A) :
IsScalarTower R₁ R₂ (A I)
def Ideal.Quotient.mkₐ (R₁ : Type u_1) {A : Type u_3} [CommSemiring R₁] [Ring A] [Algebra R₁ A] (I : Ideal A) [I.IsTwoSided] :
A →ₐ[R₁] A I

The canonical morphism A →ₐ[R₁] A ⧸ I as morphism of R₁-algebras, for I an ideal of A, where A is an R₁-algebra.

Equations
theorem Ideal.Quotient.algHom_ext (R₁ : Type u_1) {A : Type u_3} [CommSemiring R₁] [Ring A] [Algebra R₁ A] {I : Ideal A} [I.IsTwoSided] {S : Type u_5} [Semiring S] [Algebra R₁ S] f g : A I →ₐ[R₁] S (h : f.comp (mkₐ R₁ I) = g.comp (mkₐ R₁ I)) :
f = g
theorem Ideal.Quotient.alg_map_eq (R₁ : Type u_1) [CommSemiring R₁] {A : Type u_5} [CommRing A] [Algebra R₁ A] (I : Ideal A) :
algebraMap R₁ (A I) = (algebraMap A (A I)).comp (algebraMap R₁ A)
theorem Ideal.Quotient.mkₐ_toRingHom (R₁ : Type u_1) {A : Type u_3} [CommSemiring R₁] [Ring A] [Algebra R₁ A] (I : Ideal A) [I.IsTwoSided] :
(mkₐ R₁ I).toRingHom = mk I
@[simp]
theorem Ideal.Quotient.mkₐ_eq_mk (R₁ : Type u_1) {A : Type u_3} [CommSemiring R₁] [Ring A] [Algebra R₁ A] (I : Ideal A) [I.IsTwoSided] :
(mkₐ R₁ I) = (mk I)
@[simp]
theorem Ideal.Quotient.algebraMap_eq {R : Type u_5} [CommRing R] (I : Ideal R) :
algebraMap R (R I) = mk I
@[simp]
theorem Ideal.Quotient.mk_comp_algebraMap (R₁ : Type u_1) {A : Type u_3} [CommSemiring R₁] [Ring A] [Algebra R₁ A] (I : Ideal A) [I.IsTwoSided] :
(mk I).comp (algebraMap R₁ A) = algebraMap R₁ (A I)
@[simp]
theorem Ideal.Quotient.mk_algebraMap (R₁ : Type u_1) {A : Type u_3} [CommSemiring R₁] [Ring A] [Algebra R₁ A] (I : Ideal A) [I.IsTwoSided] (x : R₁) :
(mk I) ((algebraMap R₁ A) x) = (algebraMap R₁ (A I)) x
theorem Ideal.Quotient.mkₐ_surjective (R₁ : Type u_1) {A : Type u_3} [CommSemiring R₁] [Ring A] [Algebra R₁ A] (I : Ideal A) [I.IsTwoSided] :

The canonical morphism A →ₐ[R₁] I.quotient is surjective.

@[simp]
theorem Ideal.Quotient.mkₐ_ker (R₁ : Type u_1) {A : Type u_3} [CommSemiring R₁] [Ring A] [Algebra R₁ A] (I : Ideal A) [I.IsTwoSided] :
RingHom.ker (mkₐ R₁ I) = I

The kernel of A →ₐ[R₁] I.quotient is I.

def Ideal.Quotient.liftₐ {R₁ : Type u_1} {A : Type u_3} {B : Type u_4} [CommSemiring R₁] [Ring A] [Algebra R₁ A] [Semiring B] [Algebra R₁ B] (I : Ideal A) [I.IsTwoSided] (f : A →ₐ[R₁] B) (hI : aI, f a = 0) :
A I →ₐ[R₁] B

Ideal.quotient.lift as an AlgHom.

Equations
@[simp]
theorem Ideal.Quotient.liftₐ_apply {R₁ : Type u_1} {A : Type u_3} {B : Type u_4} [CommSemiring R₁] [Ring A] [Algebra R₁ A] [Semiring B] [Algebra R₁ B] (I : Ideal A) [I.IsTwoSided] (f : A →ₐ[R₁] B) (hI : aI, f a = 0) (x : A I) :
(liftₐ I f hI) x = (lift I (↑f) hI) x
theorem Ideal.Quotient.liftₐ_comp {R₁ : Type u_1} {A : Type u_3} {B : Type u_4} [CommSemiring R₁] [Ring A] [Algebra R₁ A] [Semiring B] [Algebra R₁ B] (I : Ideal A) [I.IsTwoSided] (f : A →ₐ[R₁] B) (hI : aI, f a = 0) :
(liftₐ I f hI).comp (mkₐ R₁ I) = f
theorem Ideal.KerLift.map_smul {R₁ : Type u_1} {A : Type u_3} {B : Type u_4} [CommSemiring R₁] [Ring A] [Algebra R₁ A] [Semiring B] [Algebra R₁ B] (f : A →ₐ[R₁] B) (r : R₁) (x : A RingHom.ker f) :
f.kerLift (r x) = r f.kerLift x
def Ideal.kerLiftAlg {R₁ : Type u_1} {A : Type u_3} {B : Type u_4} [CommSemiring R₁] [Ring A] [Algebra R₁ A] [Semiring B] [Algebra R₁ B] (f : A →ₐ[R₁] B) :

The induced algebras morphism from the quotient by the kernel to the codomain.

This is an isomorphism if f has a right inverse (quotientKerAlgEquivOfRightInverse) / is surjective (quotientKerAlgEquivOfSurjective).

Equations
@[simp]
theorem Ideal.kerLiftAlg_mk {R₁ : Type u_1} {A : Type u_3} {B : Type u_4} [CommSemiring R₁] [Ring A] [Algebra R₁ A] [Semiring B] [Algebra R₁ B] (f : A →ₐ[R₁] B) (a : A) :
@[simp]
theorem Ideal.kerLiftAlg_toRingHom {R₁ : Type u_1} {A : Type u_3} {B : Type u_4} [CommSemiring R₁] [Ring A] [Algebra R₁ A] [Semiring B] [Algebra R₁ B] (f : A →ₐ[R₁] B) :
(kerLiftAlg f) = (↑f).kerLift
theorem Ideal.kerLiftAlg_injective {R₁ : Type u_1} {A : Type u_3} {B : Type u_4} [CommSemiring R₁] [Ring A] [Algebra R₁ A] [Semiring B] [Algebra R₁ B] (f : A →ₐ[R₁] B) :

The induced algebra morphism from the quotient by the kernel is injective.

def Ideal.quotientKerAlgEquivOfRightInverse {R₁ : Type u_1} {A : Type u_3} {B : Type u_4} [CommSemiring R₁] [Ring A] [Algebra R₁ A] [Semiring B] [Algebra R₁ B] {f : A →ₐ[R₁] B} {g : BA} (hf : Function.RightInverse g f) :

The first isomorphism theorem for algebras, computable version.

Equations
@[simp]
theorem Ideal.quotientKerAlgEquivOfRightInverse_apply {R₁ : Type u_1} {A : Type u_3} {B : Type u_4} [CommSemiring R₁] [Ring A] [Algebra R₁ A] [Semiring B] [Algebra R₁ B] {f : A →ₐ[R₁] B} {g : BA} (hf : Function.RightInverse g f) (a : A RingHom.ker f.toRingHom) :
@[simp]
theorem Ideal.quotientKerAlgEquivOfRightInverse_symm_apply {R₁ : Type u_1} {A : Type u_3} {B : Type u_4} [CommSemiring R₁] [Ring A] [Algebra R₁ A] [Semiring B] [Algebra R₁ B] {f : A →ₐ[R₁] B} {g : BA} (hf : Function.RightInverse g f) (a✝ : B) :
noncomputable def Ideal.quotientKerAlgEquivOfSurjective {R₁ : Type u_1} {A : Type u_3} {B : Type u_4} [CommSemiring R₁] [Ring A] [Algebra R₁ A] [Semiring B] [Algebra R₁ B] {f : A →ₐ[R₁] B} (hf : Function.Surjective f) :

The first isomorphism theorem for algebras.

Equations
@[simp]
theorem Ideal.quotientKerAlgEquivOfSurjective_apply {R₁ : Type u_1} {A : Type u_3} {B : Type u_4} [CommSemiring R₁] [Ring A] [Algebra R₁ A] [Semiring B] [Algebra R₁ B] {f : A →ₐ[R₁] B} (hf : Function.Surjective f) (a : A RingHom.ker f.toRingHom) :
@[simp]
theorem Ideal.quotientKerAlgEquivOfSurjective_symm_apply {R₁ : Type u_1} {A : Type u_3} {B : Type u_4} [CommSemiring R₁] [Ring A] [Algebra R₁ A] [Semiring B] [Algebra R₁ B] {f : A →ₐ[R₁] B} (hf : Function.Surjective f) (a✝ : B) :
def Ideal.quotientMap {R : Type u} [Ring R] {S : Type v} [Ring S] {I : Ideal R} (J : Ideal S) [I.IsTwoSided] [J.IsTwoSided] (f : R →+* S) (hIJ : I comap f J) :
R I →+* S J

The ring hom R/I →+* S/J induced by a ring hom f : R →+* S with I ≤ f⁻¹(J)

Equations
@[simp]
theorem Ideal.quotientMap_mk {R : Type u} [Ring R] {S : Type v} [Ring S] {J : Ideal R} {I : Ideal S} [I.IsTwoSided] [J.IsTwoSided] {f : R →+* S} {H : J comap f I} {x : R} :
(quotientMap I f H) ((Quotient.mk J) x) = (Quotient.mk I) (f x)
@[simp]
theorem Ideal.quotientMap_algebraMap {R₁ : Type u_1} {A : Type u_3} [CommSemiring R₁] [Ring A] [Algebra R₁ A] {S : Type v} [Ring S] {J : Ideal A} {I : Ideal S} [I.IsTwoSided] [J.IsTwoSided] {f : A →+* S} {H : J comap f I} {x : R₁} :
(quotientMap I f H) ((algebraMap R₁ (A J)) x) = (Quotient.mk I) (f ((algebraMap R₁ A) x))
theorem Ideal.quotientMap_comp_mk {R : Type u} [Ring R] {S : Type v} [Ring S] {J : Ideal R} {I : Ideal S} [I.IsTwoSided] [J.IsTwoSided] {f : R →+* S} (H : J comap f I) :
def Ideal.quotientEquiv {R : Type u} [Ring R] {S : Type v} [Ring S] (I : Ideal R) (J : Ideal S) [I.IsTwoSided] [J.IsTwoSided] (f : R ≃+* S) (hIJ : J = map (↑f) I) :
R I ≃+* S J

The ring equiv R/I ≃+* S/J induced by a ring equiv f : R ≃+* S, where J = f(I).

Equations
@[simp]
theorem Ideal.quotientEquiv_apply {R : Type u} [Ring R] {S : Type v} [Ring S] (I : Ideal R) (J : Ideal S) [I.IsTwoSided] [J.IsTwoSided] (f : R ≃+* S) (hIJ : J = map (↑f) I) (a✝ : R I) :
(I.quotientEquiv J f hIJ) a✝ = (↑(quotientMap J f )).toFun a✝
@[simp]
theorem Ideal.quotientEquiv_symm_apply {R : Type u} [Ring R] {S : Type v} [Ring S] (I : Ideal R) (J : Ideal S) [I.IsTwoSided] [J.IsTwoSided] (f : R ≃+* S) (hIJ : J = map (↑f) I) (a : S J) :
(I.quotientEquiv J f hIJ).symm a = (quotientMap I f.symm ) a
theorem Ideal.quotientEquiv_mk {R : Type u} [Ring R] {S : Type v} [Ring S] (I : Ideal R) (J : Ideal S) [I.IsTwoSided] [J.IsTwoSided] (f : R ≃+* S) (hIJ : J = map (↑f) I) (x : R) :
(I.quotientEquiv J f hIJ) ((Quotient.mk I) x) = (Quotient.mk J) (f x)
@[simp]
theorem Ideal.quotientEquiv_symm_mk {R : Type u} [Ring R] {S : Type v} [Ring S] (I : Ideal R) (J : Ideal S) [I.IsTwoSided] [J.IsTwoSided] (f : R ≃+* S) (hIJ : J = map (↑f) I) (x : S) :
(I.quotientEquiv J f hIJ).symm ((Quotient.mk J) x) = (Quotient.mk I) (f.symm x)
theorem Ideal.quotientMap_injective' {R : Type u} [Ring R] {S : Type v} [Ring S] {J : Ideal R} {I : Ideal S} [I.IsTwoSided] [J.IsTwoSided] {f : R →+* S} {H : J comap f I} (h : comap f I J) :

H and h are kept as separate hypothesis since H is used in constructing the quotient map.

theorem Ideal.quotientMap_injective {R : Type u} [Ring R] {S : Type v} [Ring S] {I : Ideal S} {f : R →+* S} [I.IsTwoSided] :

If we take J = I.comap f then quotientMap is injective automatically.

theorem Ideal.quotientMap_surjective {R : Type u} [Ring R] {S : Type v} [Ring S] {J : Ideal R} {I : Ideal S} [I.IsTwoSided] [J.IsTwoSided] {f : R →+* S} {H : J comap f I} (hf : Function.Surjective f) :
theorem Ideal.comp_quotientMap_eq_of_comp_eq {R : Type u} [Ring R] {S : Type v} [Ring S] {R' : Type u_5} {S' : Type u_6} [Ring R'] [Ring S'] {f : R →+* S} {f' : R' →+* S'} {g : R →+* R'} {g' : S →+* S'} (hfg : f'.comp g = g'.comp f) (I : Ideal S') [I.IsTwoSided] :
let leq := ; (quotientMap I g' ).comp (quotientMap (comap g' I) f ) = (quotientMap I f' ).comp (quotientMap (comap f' I) g leq)

Commutativity of a square is preserved when taking quotients by an ideal.

def Ideal.quotientMapₐ {R₁ : Type u_1} {A : Type u_3} {B : Type u_4} [CommSemiring R₁] [Ring A] [Algebra R₁ A] [Ring B] [Algebra R₁ B] {I : Ideal A} (J : Ideal B) [I.IsTwoSided] [J.IsTwoSided] (f : A →ₐ[R₁] B) (hIJ : I comap f J) :
A I →ₐ[R₁] B J

The algebra hom A/I →+* B/J induced by an algebra hom f : A →ₐ[R₁] B with I ≤ f⁻¹(J).

Equations
@[simp]
theorem Ideal.quotient_map_mkₐ {R₁ : Type u_1} {A : Type u_3} {B : Type u_4} [CommSemiring R₁] [Ring A] [Algebra R₁ A] [Ring B] [Algebra R₁ B] {I : Ideal A} (J : Ideal B) [I.IsTwoSided] [J.IsTwoSided] (f : A →ₐ[R₁] B) (H : I comap f J) {x : A} :
(quotientMapₐ J f H) ((Quotient.mk I) x) = (Quotient.mkₐ R₁ J) (f x)
theorem Ideal.quotient_map_comp_mkₐ {R₁ : Type u_1} {A : Type u_3} {B : Type u_4} [CommSemiring R₁] [Ring A] [Algebra R₁ A] [Ring B] [Algebra R₁ B] {I : Ideal A} (J : Ideal B) [I.IsTwoSided] [J.IsTwoSided] (f : A →ₐ[R₁] B) (H : I comap f J) :
def Ideal.quotientEquivAlg {R₁ : Type u_1} {A : Type u_3} {B : Type u_4} [CommSemiring R₁] [Ring A] [Algebra R₁ A] [Ring B] [Algebra R₁ B] (I : Ideal A) (J : Ideal B) [I.IsTwoSided] [J.IsTwoSided] (f : A ≃ₐ[R₁] B) (hIJ : J = map (↑f) I) :
(A I) ≃ₐ[R₁] B J

The algebra equiv A/I ≃ₐ[R] B/J induced by an algebra equiv f : A ≃ₐ[R] B, whereJ = f(I).

Equations
@[reducible, inline]
abbrev Ideal.Quotient.algebraQuotientOfLEComap {A : Type u_3} [Ring A] {R : Type u_5} [CommRing R] [Algebra R A] {p : Ideal R} {P : Ideal A} [P.IsTwoSided] (h : p comap (algebraMap R A) P) :
Algebra (R p) (A P)

If P lies over p, then R / p has a canonical map to A / P.

Equations
@[instance 100]
instance Ideal.quotientAlgebra {A : Type u_3} [Ring A] {R : Type u_5} [CommRing R] {I : Ideal A} [I.IsTwoSided] [Algebra R A] :
Algebra (R comap (algebraMap R A) I) (A I)
Equations
theorem Ideal.algebraMap_quotient_injective {A : Type u_3} [Ring A] {R : Type u_5} [CommRing R] {I : Ideal A} [I.IsTwoSided] [Algebra R A] :
def Ideal.quotientEquivAlgOfEq (R₁ : Type u_1) {A : Type u_3} [CommSemiring R₁] [Ring A] [Algebra R₁ A] {I J : Ideal A} [I.IsTwoSided] [J.IsTwoSided] (h : I = J) :
(A I) ≃ₐ[R₁] A J

Quotienting by equal ideals gives equivalent algebras.

Equations
@[simp]
theorem Ideal.quotientEquivAlgOfEq_mk (R₁ : Type u_1) {A : Type u_3} [CommSemiring R₁] [Ring A] [Algebra R₁ A] {I J : Ideal A} [I.IsTwoSided] [J.IsTwoSided] (h : I = J) (x : A) :
@[simp]
theorem Ideal.quotientEquivAlgOfEq_symm (R₁ : Type u_1) {A : Type u_3} [CommSemiring R₁] [Ring A] [Algebra R₁ A] {I J : Ideal A} [I.IsTwoSided] [J.IsTwoSided] (h : I = J) :
theorem Ideal.comap_map_mk {R : Type u} [Ring R] {I J : Ideal R} [I.IsTwoSided] (h : I J) :
noncomputable def Ideal.quotientKerEquivRange {R : Type u_5} {A : Type u_6} {B : Type u_7} [CommSemiring R] [Ring A] [Algebra R A] [Semiring B] [Algebra R B] (f : A →ₐ[R] B) :

The first isomorphism theorem for commutative algebras (AlgHom.range version).

Equations
def DoubleQuot.quotLeftToQuotSup {R : Type u} [CommRing R] (I J : Ideal R) :
R I →+* R I J

The obvious ring hom R/I → R/(I ⊔ J)

Equations

The ring homomorphism (R/I)/J' -> R/(I ⊔ J) induced by quotLeftToQuotSup where J' is the image of J in R/I

Equations

The composite of the maps R → (R/I) and (R/I) → (R/I)/J'

Equations
theorem DoubleQuot.ker_quotQuotMk {R : Type u} [CommRing R] (I J : Ideal R) :

The kernel of quotQuotMk

The ring homomorphism R/(I ⊔ J) → (R/I)/J' induced by quotQuotMk

Equations

quotQuotToQuotSup and liftSupQuotQuotMk are inverse isomorphisms. In the case where I ≤ J, this is the Third Isomorphism Theorem (see quotQuotEquivQuotOfLe).

Equations
@[simp]
@[simp]
theorem DoubleQuot.quotQuotEquivComm_quotQuotMk {R : Type u} [CommRing R] (I J : Ideal R) (x : R) :
(quotQuotEquivComm I J) ((quotQuotMk I J) x) = (quotQuotMk J I) x
def DoubleQuot.quotQuotEquivQuotOfLE {R : Type u} [CommRing R] {I J : Ideal R} (h : I J) :

The Third Isomorphism theorem for rings. See quotQuotEquivQuotSup for a version that does not assume an inclusion of ideals.

Equations
@[simp]
theorem DoubleQuot.quotQuotEquivQuotOfLE_quotQuotMk {R : Type u} [CommRing R] {I J : Ideal R} (x : R) (h : I J) :
@[simp]
theorem DoubleQuot.quotQuotEquivQuotOfLE_symm_mk {R : Type u} [CommRing R] {I J : Ideal R} (x : R) (h : I J) :
@[simp]
theorem DoubleQuot.quotQuotEquivQuotSup_quot_quot_algebraMap {R : Type u} [CommSemiring R] {A : Type v} [CommRing A] [Algebra R A] (I J : Ideal A) (x : R) :
@[simp]
theorem DoubleQuot.quotQuotEquivComm_algebraMap {R : Type u} [CommSemiring R] {A : Type v} [CommRing A] [Algebra R A] (I J : Ideal A) (x : R) :
def DoubleQuot.quotLeftToQuotSupₐ (R : Type u) {A : Type u_1} [CommSemiring R] [CommRing A] [Algebra R A] (I J : Ideal A) :
A I →ₐ[R] A I J

The natural algebra homomorphism A / I → A / (I ⊔ J).

Equations
@[simp]
theorem DoubleQuot.coe_quotLeftToQuotSupₐ (R : Type u) {A : Type u_1} [CommSemiring R] [CommRing A] [Algebra R A] (I J : Ideal A) :
def DoubleQuot.quotQuotToQuotSupₐ (R : Type u) {A : Type u_1} [CommSemiring R] [CommRing A] [Algebra R A] (I J : Ideal A) :

The algebra homomorphism (A / I) / J' -> A / (I ⊔ J) induced by quotQuotToQuotSup, where J' is the projection of J in A / I.

Equations
@[simp]
theorem DoubleQuot.coe_quotQuotToQuotSupₐ (R : Type u) {A : Type u_1} [CommSemiring R] [CommRing A] [Algebra R A] (I J : Ideal A) :
def DoubleQuot.quotQuotMkₐ (R : Type u) {A : Type u_1} [CommSemiring R] [CommRing A] [Algebra R A] (I J : Ideal A) :

The composition of the algebra homomorphisms A → (A / I) and (A / I) → (A / I) / J', where J' is the projection J in A / I.

Equations
@[simp]
theorem DoubleQuot.quotQuotMkₐ_toRingHom (R : Type u) {A : Type u_1} [CommSemiring R] [CommRing A] [Algebra R A] (I J : Ideal A) :
(quotQuotMkₐ R I J) = quotQuotMk I J
@[simp]
theorem DoubleQuot.coe_quotQuotMkₐ (R : Type u) {A : Type u_1} [CommSemiring R] [CommRing A] [Algebra R A] (I J : Ideal A) :
(quotQuotMkₐ R I J) = (quotQuotMk I J)
def DoubleQuot.liftSupQuotQuotMkₐ (R : Type u) {A : Type u_1} [CommSemiring R] [CommRing A] [Algebra R A] (I J : Ideal A) :

The injective algebra homomorphism A / (I ⊔ J) → (A / I) / J'induced by quot_quot_mk, where J' is the projection J in A / I.

Equations
@[simp]
theorem DoubleQuot.coe_liftSupQuotQuotMkₐ (R : Type u) {A : Type u_1} [CommSemiring R] [CommRing A] [Algebra R A] (I J : Ideal A) :
def DoubleQuot.quotQuotEquivQuotSupₐ (R : Type u) {A : Type u_1} [CommSemiring R] [CommRing A] [Algebra R A] (I J : Ideal A) :

quotQuotToQuotSup and liftSupQuotQuotMk are inverse isomorphisms. In the case where I ≤ J, this is the Third Isomorphism Theorem (see DoubleQuot.quotQuotEquivQuotOfLE).

Equations
@[simp]

The natural algebra isomorphism (A / I) / J' → (A / J) / I', where J' (resp. I') is the projection of J in A / I (resp. I in A / J).

Equations
@[simp]
theorem DoubleQuot.coe_quotQuotEquivCommₐ (R : Type u) {A : Type u_1} [CommSemiring R] [CommRing A] [Algebra R A] (I J : Ideal A) :
@[simp]
def DoubleQuot.quotQuotEquivQuotOfLEₐ (R : Type u) {A : Type u_1} [CommSemiring R] [CommRing A] [Algebra R A] {I J : Ideal A} (h : I J) :

The third isomorphism theorem for algebras. See quotQuotEquivQuotSupₐ for version that does not assume an inclusion of ideals.

Equations
@[simp]
theorem DoubleQuot.coe_quotQuotEquivQuotOfLEₐ (R : Type u) {A : Type u_1} [CommSemiring R] [CommRing A] [Algebra R A] {I J : Ideal A} (h : I J) :
noncomputable def Ideal.powQuotPowSuccLinearEquivMapMkPowSuccPow {R : Type u_1} [CommRing R] (I : Ideal R) (n : ) :
(↥(I ^ n) I ) ≃ₗ[R] (map (Quotient.mk (I ^ (n + 1))) (I ^ n))

I ^ n ⧸ I ^ (n + 1) can be viewed as a quotient module and as ideal of R ⧸ I ^ (n + 1). This definition gives the R-linear equivalence between the two.

Equations
  • One or more equations did not get rendered due to their size.
noncomputable def Ideal.powQuotPowSuccEquivMapMkPowSuccPow {R : Type u_1} [CommRing R] (I : Ideal R) (n : ) :
↥(I ^ n) I (map (Quotient.mk (I ^ (n + 1))) (I ^ n))

I ^ n ⧸ I ^ (n + 1) can be viewed as a quotient module and as ideal of R ⧸ I ^ (n + 1). This definition gives the equivalence between the two, instead of the R-linear equivalence, to bypass typeclass synthesis issues on complex Module goals.

Equations