Continuous linear maps composed with integration #
The goal of this file is to prove that integration commutes with continuous linear maps.
This holds for simple functions. The general result follows from the continuity of all involved
operations on the space L¹
. Note that composition by a continuous linear map on L¹
is not just
the composition, as we are dealing with classes of functions, but it has already been defined
as ContinuousLinearMap.compLp
. We take advantage of this construction here.
theorem
ContinuousLinearMap.integral_compLp
{X : Type u_1}
{E : Type u_3}
{F : Type u_4}
[MeasurableSpace X]
{μ : MeasureTheory.Measure X}
{𝕜 : Type u_5}
[RCLike 𝕜]
[NormedAddCommGroup E]
[NormedSpace 𝕜 E]
[NormedAddCommGroup F]
[NormedSpace 𝕜 F]
{p : ENNReal}
[NormedSpace ℝ F]
(L : E →L[𝕜] F)
(φ : ↥(MeasureTheory.Lp E p μ))
:
theorem
ContinuousLinearMap.setIntegral_compLp
{X : Type u_1}
{E : Type u_3}
{F : Type u_4}
[MeasurableSpace X]
{μ : MeasureTheory.Measure X}
{𝕜 : Type u_5}
[RCLike 𝕜]
[NormedAddCommGroup E]
[NormedSpace 𝕜 E]
[NormedAddCommGroup F]
[NormedSpace 𝕜 F]
{p : ENNReal}
[NormedSpace ℝ F]
(L : E →L[𝕜] F)
(φ : ↥(MeasureTheory.Lp E p μ))
{s : Set X}
(hs : MeasurableSet s)
:
theorem
ContinuousLinearMap.continuous_integral_comp_L1
{X : Type u_1}
{E : Type u_3}
{F : Type u_4}
[MeasurableSpace X]
{μ : MeasureTheory.Measure X}
{𝕜 : Type u_5}
[RCLike 𝕜]
[NormedAddCommGroup E]
[NormedSpace 𝕜 E]
[NormedAddCommGroup F]
[NormedSpace 𝕜 F]
[NormedSpace ℝ F]
(L : E →L[𝕜] F)
:
Continuous fun (φ : ↥(MeasureTheory.Lp E 1 μ)) => ∫ (x : X), L (↑↑φ x) ∂μ
theorem
ContinuousLinearMap.integral_comp_comm
{X : Type u_1}
{E : Type u_3}
{F : Type u_4}
[MeasurableSpace X]
{μ : MeasureTheory.Measure X}
{𝕜 : Type u_5}
[RCLike 𝕜]
[NormedAddCommGroup E]
[NormedSpace 𝕜 E]
[NormedAddCommGroup F]
[NormedSpace 𝕜 F]
[NormedSpace ℝ F]
[CompleteSpace F]
[NormedSpace ℝ E]
[CompleteSpace E]
(L : E →L[𝕜] F)
{φ : X → E}
(φ_int : MeasureTheory.Integrable φ μ)
:
theorem
ContinuousLinearMap.integral_apply
{X : Type u_1}
{E : Type u_3}
[MeasurableSpace X]
{μ : MeasureTheory.Measure X}
{𝕜 : Type u_5}
[RCLike 𝕜]
[NormedAddCommGroup E]
[NormedSpace 𝕜 E]
[NormedSpace ℝ E]
{H : Type u_6}
[NormedAddCommGroup H]
[NormedSpace 𝕜 H]
{φ : X → H →L[𝕜] E}
(φ_int : MeasureTheory.Integrable φ μ)
(v : H)
:
theorem
ContinuousMultilinearMap.integral_apply
{X : Type u_1}
{E : Type u_3}
[MeasurableSpace X]
{μ : MeasureTheory.Measure X}
{𝕜 : Type u_5}
[RCLike 𝕜]
[NormedAddCommGroup E]
[NormedSpace 𝕜 E]
[NormedSpace ℝ E]
{ι : Type u_6}
[Fintype ι]
{M : ι → Type u_7}
[(i : ι) → NormedAddCommGroup (M i)]
[(i : ι) → NormedSpace 𝕜 (M i)]
{φ : X → ContinuousMultilinearMap 𝕜 M E}
(φ_int : MeasureTheory.Integrable φ μ)
(m : (i : ι) → M i)
:
theorem
ContinuousLinearMap.integral_comp_comm'
{X : Type u_1}
{E : Type u_3}
{F : Type u_4}
[MeasurableSpace X]
{μ : MeasureTheory.Measure X}
{𝕜 : Type u_5}
[RCLike 𝕜]
[NormedAddCommGroup E]
[NormedSpace 𝕜 E]
[NormedAddCommGroup F]
[NormedSpace 𝕜 F]
[NormedSpace ℝ F]
[CompleteSpace F]
[NormedSpace ℝ E]
[CompleteSpace E]
(L : E →L[𝕜] F)
{K : NNReal}
(hL : AntilipschitzWith K ⇑L)
(φ : X → E)
:
theorem
ContinuousLinearMap.integral_comp_L1_comm
{X : Type u_1}
{E : Type u_3}
{F : Type u_4}
[MeasurableSpace X]
{μ : MeasureTheory.Measure X}
{𝕜 : Type u_5}
[RCLike 𝕜]
[NormedAddCommGroup E]
[NormedSpace 𝕜 E]
[NormedAddCommGroup F]
[NormedSpace 𝕜 F]
[NormedSpace ℝ F]
[CompleteSpace F]
[NormedSpace ℝ E]
[CompleteSpace E]
(L : E →L[𝕜] F)
(φ : ↥(MeasureTheory.Lp E 1 μ))
:
theorem
LinearIsometry.integral_comp_comm
{X : Type u_1}
{E : Type u_3}
{F : Type u_4}
[MeasurableSpace X]
{μ : MeasureTheory.Measure X}
{𝕜 : Type u_5}
[RCLike 𝕜]
[NormedAddCommGroup E]
[NormedSpace 𝕜 E]
[NormedAddCommGroup F]
[NormedSpace 𝕜 F]
[CompleteSpace F]
[NormedSpace ℝ F]
[CompleteSpace E]
[NormedSpace ℝ E]
(L : E →ₗᵢ[𝕜] F)
(φ : X → E)
:
theorem
ContinuousLinearEquiv.integral_comp_comm
{X : Type u_1}
{E : Type u_3}
{F : Type u_4}
[MeasurableSpace X]
{μ : MeasureTheory.Measure X}
{𝕜 : Type u_5}
[RCLike 𝕜]
[NormedAddCommGroup E]
[NormedSpace 𝕜 E]
[NormedAddCommGroup F]
[NormedSpace 𝕜 F]
[NormedSpace ℝ F]
[NormedSpace ℝ E]
(L : E ≃L[𝕜] F)
(φ : X → E)
:
theorem
ContinuousMap.integral_apply
{X : Type u_1}
{Y : Type u_2}
{E : Type u_3}
[MeasurableSpace X]
{μ : MeasureTheory.Measure X}
[NormedAddCommGroup E]
[TopologicalSpace Y]
[CompactSpace Y]
[NormedSpace ℝ E]
[CompleteSpace E]
{f : X → C(Y, E)}
(hf : MeasureTheory.Integrable f μ)
(y : Y)
:
theorem
ContinuousMapZero.integral_apply
{X : Type u_1}
{Y : Type u_2}
[MeasurableSpace X]
{μ : MeasureTheory.Measure X}
[TopologicalSpace Y]
[CompactSpace Y]
{R : Type u_6}
[NormedCommRing R]
[Zero Y]
[NormedAlgebra ℝ R]
[CompleteSpace R]
{f : X → ContinuousMapZero Y R}
(hf : MeasureTheory.Integrable f μ)
(y : Y)
:
theorem
integral_ofReal
{X : Type u_1}
[MeasurableSpace X]
{μ : MeasureTheory.Measure X}
{𝕜 : Type u_5}
[RCLike 𝕜]
{f : X → ℝ}
:
theorem
integral_complex_ofReal
{X : Type u_1}
[MeasurableSpace X]
{μ : MeasureTheory.Measure X}
{f : X → ℝ}
:
theorem
integral_re
{X : Type u_1}
[MeasurableSpace X]
{μ : MeasureTheory.Measure X}
{𝕜 : Type u_5}
[RCLike 𝕜]
{f : X → 𝕜}
(hf : MeasureTheory.Integrable f μ)
:
theorem
integral_im
{X : Type u_1}
[MeasurableSpace X]
{μ : MeasureTheory.Measure X}
{𝕜 : Type u_5}
[RCLike 𝕜]
{f : X → 𝕜}
(hf : MeasureTheory.Integrable f μ)
:
theorem
integral_conj
{X : Type u_1}
[MeasurableSpace X]
{μ : MeasureTheory.Measure X}
{𝕜 : Type u_5}
[RCLike 𝕜]
{f : X → 𝕜}
:
theorem
swap_integral
{X : Type u_1}
{E : Type u_3}
{F : Type u_4}
[MeasurableSpace X]
{μ : MeasureTheory.Measure X}
[NormedAddCommGroup E]
[NormedAddCommGroup F]
[NormedSpace ℝ E]
[NormedSpace ℝ F]
(f : X → E × F)
:
theorem
fst_integral
{X : Type u_1}
{E : Type u_3}
{F : Type u_4}
[MeasurableSpace X]
{μ : MeasureTheory.Measure X}
[NormedAddCommGroup E]
[NormedAddCommGroup F]
[NormedSpace ℝ E]
[NormedSpace ℝ F]
[CompleteSpace F]
{f : X → E × F}
(hf : MeasureTheory.Integrable f μ)
:
theorem
snd_integral
{X : Type u_1}
{E : Type u_3}
{F : Type u_4}
[MeasurableSpace X]
{μ : MeasureTheory.Measure X}
[NormedAddCommGroup E]
[NormedAddCommGroup F]
[NormedSpace ℝ E]
[NormedSpace ℝ F]
[CompleteSpace E]
{f : X → E × F}
(hf : MeasureTheory.Integrable f μ)
:
theorem
integral_pair
{X : Type u_1}
{E : Type u_3}
{F : Type u_4}
[MeasurableSpace X]
{μ : MeasureTheory.Measure X}
[NormedAddCommGroup E]
[NormedAddCommGroup F]
[NormedSpace ℝ E]
[NormedSpace ℝ F]
[CompleteSpace E]
[CompleteSpace F]
{f : X → E}
{g : X → F}
(hf : MeasureTheory.Integrable f μ)
(hg : MeasureTheory.Integrable g μ)
:
theorem
integral_smul_const
{X : Type u_1}
{E : Type u_3}
[MeasurableSpace X]
{μ : MeasureTheory.Measure X}
[NormedAddCommGroup E]
[NormedSpace ℝ E]
{𝕜 : Type u_6}
[RCLike 𝕜]
[NormedSpace 𝕜 E]
[CompleteSpace E]
(f : X → 𝕜)
(c : E)
:
theorem
integral_withDensity_eq_integral_smul
{X : Type u_1}
{E : Type u_3}
[MeasurableSpace X]
{μ : MeasureTheory.Measure X}
[NormedAddCommGroup E]
[NormedSpace ℝ E]
{f : X → NNReal}
(f_meas : Measurable f)
(g : X → E)
:
theorem
integral_withDensity_eq_integral_smul₀
{X : Type u_1}
{E : Type u_3}
[MeasurableSpace X]
{μ : MeasureTheory.Measure X}
[NormedAddCommGroup E]
[NormedSpace ℝ E]
{f : X → NNReal}
(hf : AEMeasurable f μ)
(g : X → E)
:
theorem
integral_withDensity_eq_integral_toReal_smul₀
{X : Type u_1}
{E : Type u_3}
[MeasurableSpace X]
{μ : MeasureTheory.Measure X}
[NormedAddCommGroup E]
[NormedSpace ℝ E]
{f : X → ENNReal}
(f_meas : AEMeasurable f μ)
(hf_lt_top : ∀ᵐ (x : X) ∂μ, f x < ⊤)
(g : X → E)
:
theorem
integral_withDensity_eq_integral_toReal_smul
{X : Type u_1}
{E : Type u_3}
[MeasurableSpace X]
{μ : MeasureTheory.Measure X}
[NormedAddCommGroup E]
[NormedSpace ℝ E]
{f : X → ENNReal}
(f_meas : Measurable f)
(hf_lt_top : ∀ᵐ (x : X) ∂μ, f x < ⊤)
(g : X → E)
:
theorem
setIntegral_withDensity_eq_setIntegral_smul₀
{X : Type u_1}
{E : Type u_3}
[MeasurableSpace X]
{μ : MeasureTheory.Measure X}
[NormedAddCommGroup E]
[NormedSpace ℝ E]
{f : X → NNReal}
{s : Set X}
(hf : AEMeasurable f (μ.restrict s))
(g : X → E)
(hs : MeasurableSet s)
:
theorem
setIntegral_withDensity_eq_setIntegral_toReal_smul₀
{X : Type u_1}
{E : Type u_3}
[MeasurableSpace X]
{μ : MeasureTheory.Measure X}
[NormedAddCommGroup E]
[NormedSpace ℝ E]
{f : X → ENNReal}
{s : Set X}
(hf : AEMeasurable f (μ.restrict s))
(hf_top : ∀ᵐ (x : X) ∂μ.restrict s, f x < ⊤)
(g : X → E)
(hs : MeasurableSet s)
:
theorem
setIntegral_withDensity_eq_setIntegral_smul
{X : Type u_1}
{E : Type u_3}
[MeasurableSpace X]
{μ : MeasureTheory.Measure X}
[NormedAddCommGroup E]
[NormedSpace ℝ E]
{f : X → NNReal}
(f_meas : Measurable f)
(g : X → E)
{s : Set X}
(hs : MeasurableSet s)
:
theorem
setIntegral_withDensity_eq_setIntegral_toReal_smul
{X : Type u_1}
{E : Type u_3}
[MeasurableSpace X]
{μ : MeasureTheory.Measure X}
[NormedAddCommGroup E]
[NormedSpace ℝ E]
{f : X → ENNReal}
{s : Set X}
(hf : Measurable f)
(hf_top : ∀ᵐ (x : X) ∂μ.restrict s, f x < ⊤)
(g : X → E)
(hs : MeasurableSet s)
:
theorem
setIntegral_withDensity_eq_setIntegral_smul₀'
{X : Type u_1}
{E : Type u_3}
[MeasurableSpace X]
{μ : MeasureTheory.Measure X}
[NormedAddCommGroup E]
[NormedSpace ℝ E]
[MeasureTheory.SFinite μ]
{f : X → NNReal}
(s : Set X)
(hf : AEMeasurable f (μ.restrict s))
(g : X → E)
:
theorem
setIntegral_withDensity_eq_setIntegral_toReal_smul₀'
{X : Type u_1}
{E : Type u_3}
[MeasurableSpace X]
{μ : MeasureTheory.Measure X}
[NormedAddCommGroup E]
[NormedSpace ℝ E]
[MeasureTheory.SFinite μ]
{f : X → ENNReal}
(s : Set X)
(hf : AEMeasurable f (μ.restrict s))
(hf_top : ∀ᵐ (x : X) ∂μ.restrict s, f x < ⊤)
(g : X → E)
:
theorem
setIntegral_withDensity_eq_setIntegral_toReal_smul'
{X : Type u_1}
{E : Type u_3}
[MeasurableSpace X]
{μ : MeasureTheory.Measure X}
[NormedAddCommGroup E]
[NormedSpace ℝ E]
[MeasureTheory.SFinite μ]
{f : X → ENNReal}
(s : Set X)
(hf : Measurable f)
(hf_top : ∀ᵐ (x : X) ∂μ.restrict s, f x < ⊤)
(g : X → E)
: