Documentation

Mathlib.RingTheory.Algebraic.Basic

Algebraic elements and algebraic extensions #

An element of an R-algebra is algebraic over R if it is the root of a nonzero polynomial. An R-algebra is algebraic over R if and only if all its elements are algebraic over R. The main result in this file proves transitivity of algebraicity: a tower of algebraic field extensions is algebraic.

theorem is_transcendental_of_subsingleton (R : Type u) {A : Type v} [CommRing R] [Ring A] [Algebra R A] [Subsingleton R] (x : A) :
theorem IsAlgebraic.nontrivial {R : Type u} {A : Type v} [CommRing R] [Ring A] [Algebra R A] {a : A} (h : IsAlgebraic R a) :
@[instance 100]
theorem IsAlgebraic.of_aeval {R : Type u} {A : Type v} [CommRing R] [Ring A] [Algebra R A] {r : A} (f : Polynomial R) (hf : f.natDegree 0) (hf' : f.leadingCoeff nonZeroDivisors R) (H : IsAlgebraic R ((Polynomial.aeval r) f)) :
theorem Transcendental.aeval {R : Type u} {A : Type v} [CommRing R] [Ring A] [Algebra R A] {r : A} (H : Transcendental R r) (f : Polynomial R) (hf : f.natDegree 0) (hf' : f.leadingCoeff nonZeroDivisors R) :
theorem Transcendental.aeval_of_transcendental {R : Type u} {A : Type v} [CommRing R] [Ring A] [Algebra R A] {r : A} (H : Transcendental R r) {f : Polynomial R} (hf : Transcendental R f) :

If r : A and f : R[X] are transcendental over R, then Polynomial.aeval r f is also transcendental over R. For the converse, see Transcendental.of_aeval and transcendental_aeval_iff.

theorem Transcendental.of_aeval {R : Type u} {A : Type v} [CommRing R] [Ring A] [Algebra R A] {r : A} {f : Polynomial R} (H : Transcendental R ((Polynomial.aeval r) f)) :

If Polynomial.aeval r f is transcendental over R, then f : R[X] is also transcendental over R. In fact, the r is also transcendental over R provided that R is a field (see transcendental_aeval_iff).

theorem IsAlgebraic.of_aeval_of_transcendental {R : Type u} {A : Type v} [CommRing R] [Ring A] [Algebra R A] {r : A} {f : Polynomial R} (H : IsAlgebraic R ((Polynomial.aeval r) f)) (hf : Transcendental R f) :
theorem Polynomial.transcendental {R : Type u} [CommRing R] (f : Polynomial R) (hf : f.natDegree 0) (hf' : f.leadingCoeff nonZeroDivisors R) :

An element x is transcendental over R if and only if the map Polynomial.aeval x is injective. This is similar to algebraicIndependent_iff_injective_aeval.

An element x is transcendental over R if and only if the kernel of the ring homomorphism Polynomial.aeval x is the zero ideal. This is similar to algebraicIndependent_iff_ker_eq_bot.

theorem isAlgebraic_zero {R : Type u} {A : Type v} [CommRing R] [Ring A] [Algebra R A] [Nontrivial R] :
theorem isAlgebraic_algebraMap {R : Type u} {A : Type v} [CommRing R] [Ring A] [Algebra R A] [Nontrivial R] (x : R) :

An element of R is algebraic, when viewed as an element of the R-algebra A.

theorem isAlgebraic_one {R : Type u} {A : Type v} [CommRing R] [Ring A] [Algebra R A] [Nontrivial R] :
theorem isAlgebraic_nat {R : Type u} {A : Type v} [CommRing R] [Ring A] [Algebra R A] [Nontrivial R] (n : ) :
theorem isAlgebraic_int {R : Type u} {A : Type v} [CommRing R] [Ring A] [Algebra R A] [Nontrivial R] (n : ) :
theorem isAlgebraic_rat (R : Type u) {A : Type v} [DivisionRing A] [Field R] [Algebra R A] (n : ) :
theorem isAlgebraic_of_mem_rootSet {R : Type u} {A : Type v} [Field R] [Field A] [Algebra R A] {p : Polynomial R} {x : A} (hx : x p.rootSet A) :
theorem IsAlgebraic.algebraMap {R : Type u} {S : Type u_1} {A : Type v} [CommRing R] [CommRing S] [Ring A] [Algebra R A] [Algebra R S] [Algebra S A] [IsScalarTower R S A] {a : S} :
IsAlgebraic R aIsAlgebraic R ((algebraMap S A) a)
theorem IsAlgebraic.algHom {R : Type u} {A : Type v} [CommRing R] [Ring A] [Algebra R A] {B : Type u_2} [Ring B] [Algebra R B] (f : A →ₐ[R] B) {a : A} (h : IsAlgebraic R a) :
IsAlgebraic R (f a)

This is slightly more general than IsAlgebraic.algebraMap in that it allows noncommutative intermediate rings A.

theorem isAlgebraic_algHom_iff {R : Type u} {A : Type v} [CommRing R] [Ring A] [Algebra R A] {B : Type u_2} [Ring B] [Algebra R B] (f : A →ₐ[R] B) (hf : Function.Injective f) {a : A} :
theorem IsAlgebraic.ringHom_of_comp_eq {R : Type u} {S : Type u_1} {A : Type v} [CommRing R] [CommRing S] [Ring A] [Algebra R A] {B : Type u_2} [Ring B] [Algebra S B] {FRS : Type u_3} {FAB : Type u_4} [FunLike FRS R S] [RingHomClass FRS R S] [FunLike FAB A B] [RingHomClass FAB A B] (f : FRS) (g : FAB) {a : A} (halg : IsAlgebraic R a) (hf : Function.Injective f) (h : (algebraMap S B).comp f = (↑g).comp (algebraMap R A)) :
IsAlgebraic S (g a)
theorem Transcendental.of_ringHom_of_comp_eq {R : Type u} {S : Type u_1} {A : Type v} [CommRing R] [CommRing S] [Ring A] [Algebra R A] {B : Type u_2} [Ring B] [Algebra S B] {FRS : Type u_3} {FAB : Type u_4} [FunLike FRS R S] [RingHomClass FRS R S] [FunLike FAB A B] [RingHomClass FAB A B] (f : FRS) (g : FAB) {a : A} (H : Transcendental S (g a)) (hf : Function.Injective f) (h : (algebraMap S B).comp f = (↑g).comp (algebraMap R A)) :
theorem Algebra.IsAlgebraic.ringHom_of_comp_eq {R : Type u} {S : Type u_1} {A : Type v} [CommRing R] [CommRing S] [Ring A] [Algebra R A] {B : Type u_2} [Ring B] [Algebra S B] {FRS : Type u_3} {FAB : Type u_4} [FunLike FRS R S] [RingHomClass FRS R S] [FunLike FAB A B] [RingHomClass FAB A B] (f : FRS) (g : FAB) [Algebra.IsAlgebraic R A] (hf : Function.Injective f) (hg : Function.Surjective g) (h : (algebraMap S B).comp f = (↑g).comp (algebraMap R A)) :
theorem Algebra.Transcendental.of_ringHom_of_comp_eq {R : Type u} {S : Type u_1} {A : Type v} [CommRing R] [CommRing S] [Ring A] [Algebra R A] {B : Type u_2} [Ring B] [Algebra S B] {FRS : Type u_3} {FAB : Type u_4} [FunLike FRS R S] [RingHomClass FRS R S] [FunLike FAB A B] [RingHomClass FAB A B] (f : FRS) (g : FAB) [H : Algebra.Transcendental S B] (hf : Function.Injective f) (hg : Function.Surjective g) (h : (algebraMap S B).comp f = (↑g).comp (algebraMap R A)) :
theorem IsAlgebraic.of_ringHom_of_comp_eq {R : Type u} {S : Type u_1} {A : Type v} [CommRing R] [CommRing S] [Ring A] [Algebra R A] {B : Type u_2} [Ring B] [Algebra S B] {FRS : Type u_3} {FAB : Type u_4} [FunLike FRS R S] [RingHomClass FRS R S] [FunLike FAB A B] [RingHomClass FAB A B] (f : FRS) (g : FAB) {a : A} (halg : IsAlgebraic S (g a)) (hf : Function.Surjective f) (hg : Function.Injective g) (h : (algebraMap S B).comp f = (↑g).comp (algebraMap R A)) :
theorem Transcendental.ringHom_of_comp_eq {R : Type u} {S : Type u_1} {A : Type v} [CommRing R] [CommRing S] [Ring A] [Algebra R A] {B : Type u_2} [Ring B] [Algebra S B] {FRS : Type u_3} {FAB : Type u_4} [FunLike FRS R S] [RingHomClass FRS R S] [FunLike FAB A B] [RingHomClass FAB A B] (f : FRS) (g : FAB) {a : A} (H : Transcendental R a) (hf : Function.Surjective f) (hg : Function.Injective g) (h : (algebraMap S B).comp f = (↑g).comp (algebraMap R A)) :
theorem Algebra.IsAlgebraic.of_ringHom_of_comp_eq {R : Type u} {S : Type u_1} {A : Type v} [CommRing R] [CommRing S] [Ring A] [Algebra R A] {B : Type u_2} [Ring B] [Algebra S B] {FRS : Type u_3} {FAB : Type u_4} [FunLike FRS R S] [RingHomClass FRS R S] [FunLike FAB A B] [RingHomClass FAB A B] (f : FRS) (g : FAB) [Algebra.IsAlgebraic S B] (hf : Function.Surjective f) (hg : Function.Injective g) (h : (algebraMap S B).comp f = (↑g).comp (algebraMap R A)) :
theorem Algebra.Transcendental.ringHom_of_comp_eq {R : Type u} {S : Type u_1} {A : Type v} [CommRing R] [CommRing S] [Ring A] [Algebra R A] {B : Type u_2} [Ring B] [Algebra S B] {FRS : Type u_3} {FAB : Type u_4} [FunLike FRS R S] [RingHomClass FRS R S] [FunLike FAB A B] [RingHomClass FAB A B] (f : FRS) (g : FAB) [H : Algebra.Transcendental R A] (hf : Function.Surjective f) (hg : Function.Injective g) (h : (algebraMap S B).comp f = (↑g).comp (algebraMap R A)) :
theorem isAlgebraic_ringHom_iff_of_comp_eq {R : Type u} {S : Type u_1} {A : Type v} [CommRing R] [CommRing S] [Ring A] [Algebra R A] {B : Type u_2} [Ring B] [Algebra S B] {FRS : Type u_3} {FAB : Type u_4} [EquivLike FRS R S] [RingEquivClass FRS R S] [FunLike FAB A B] [RingHomClass FAB A B] (f : FRS) (g : FAB) (hg : Function.Injective g) (h : (algebraMap S B).comp f = (↑g).comp (algebraMap R A)) {a : A} :
theorem transcendental_ringHom_iff_of_comp_eq {R : Type u} {S : Type u_1} {A : Type v} [CommRing R] [CommRing S] [Ring A] [Algebra R A] {B : Type u_2} [Ring B] [Algebra S B] {FRS : Type u_3} {FAB : Type u_4} [EquivLike FRS R S] [RingEquivClass FRS R S] [FunLike FAB A B] [RingHomClass FAB A B] (f : FRS) (g : FAB) (hg : Function.Injective g) (h : (algebraMap S B).comp f = (↑g).comp (algebraMap R A)) {a : A} :
theorem Algebra.isAlgebraic_ringHom_iff_of_comp_eq {R : Type u} {S : Type u_1} {A : Type v} [CommRing R] [CommRing S] [Ring A] [Algebra R A] {B : Type u_2} [Ring B] [Algebra S B] {FRS : Type u_3} {FAB : Type u_4} [EquivLike FRS R S] [RingEquivClass FRS R S] [EquivLike FAB A B] [RingEquivClass FAB A B] (f : FRS) (g : FAB) (h : (algebraMap S B).comp f = (↑g).comp (algebraMap R A)) :
theorem Algebra.transcendental_ringHom_iff_of_comp_eq {R : Type u} {S : Type u_1} {A : Type v} [CommRing R] [CommRing S] [Ring A] [Algebra R A] {B : Type u_2} [Ring B] [Algebra S B] {FRS : Type u_3} {FAB : Type u_4} [EquivLike FRS R S] [RingEquivClass FRS R S] [EquivLike FAB A B] [RingEquivClass FAB A B] (f : FRS) (g : FAB) (h : (algebraMap S B).comp f = (↑g).comp (algebraMap R A)) :
theorem Algebra.IsAlgebraic.of_injective {R : Type u} {A : Type v} [CommRing R] [Ring A] [Algebra R A] {B : Type u_2} [Ring B] [Algebra R B] (f : A →ₐ[R] B) (hf : Function.Injective f) [Algebra.IsAlgebraic R B] :
theorem AlgEquiv.isAlgebraic {R : Type u} {A : Type v} [CommRing R] [Ring A] [Algebra R A] {B : Type u_2} [Ring B] [Algebra R B] (e : A ≃ₐ[R] B) [Algebra.IsAlgebraic R A] :

Transfer Algebra.IsAlgebraic across an AlgEquiv.

theorem AlgEquiv.isAlgebraic_iff {R : Type u} {A : Type v} [CommRing R] [Ring A] [Algebra R A] {B : Type u_2} [Ring B] [Algebra R B] (e : A ≃ₐ[R] B) :
theorem isAlgebraic_algebraMap_iff {R : Type u} {S : Type u_1} {A : Type v} [CommRing R] [CommRing S] [Ring A] [Algebra R A] [Algebra R S] [Algebra S A] [IsScalarTower R S A] {a : S} (h : Function.Injective (algebraMap S A)) :
theorem transcendental_algebraMap_iff {R : Type u} {S : Type u_1} {A : Type v} [CommRing R] [CommRing S] [Ring A] [Algebra R A] [Algebra R S] [Algebra S A] [IsScalarTower R S A] {a : S} (h : Function.Injective (algebraMap S A)) :
theorem Subalgebra.isAlgebraic_iff_isAlgebraic_val {R : Type u} {A : Type v} [CommRing R] [Ring A] [Algebra R A] {S : Subalgebra R A} {x : S} :
theorem Subalgebra.isAlgebraic_of_isAlgebraic_bot {R : Type u} {S : Type u_1} [CommRing R] [CommRing S] [Algebra R S] {x : S} (halg : IsAlgebraic (↥) x) :
theorem Subalgebra.isAlgebraic_bot_iff {R : Type u} {S : Type u_1} [CommRing R] [CommRing S] [Algebra R S] (h : Function.Injective (algebraMap R S)) {x : S} :
theorem IsAlgebraic.of_pow {R : Type u} {A : Type v} [CommRing R] [Ring A] [Algebra R A] {r : A} {n : } (hn : 0 < n) (ht : IsAlgebraic R (r ^ n)) :
theorem Transcendental.pow {R : Type u} {A : Type v} [CommRing R] [Ring A] [Algebra R A] {r : A} (ht : Transcendental R r) {n : } (hn : 0 < n) :
theorem IsAlgebraic.invOf {R : Type u} {S : Type u_1} [CommRing R] [CommRing S] [Algebra R S] {x : S} [Invertible x] (h : IsAlgebraic R x) :
theorem IsAlgebraic.invOf_iff {R : Type u} {S : Type u_1} [CommRing R] [CommRing S] [Algebra R S] {x : S} [Invertible x] :
theorem IsAlgebraic.inv_iff {R : Type u} [CommRing R] {K : Type u_2} [Field K] [Algebra R K] {x : K} :
theorem IsAlgebraic.inv {R : Type u} [CommRing R] {K : Type u_2} [Field K] [Algebra R K] {x : K} :

Alias of the reverse direction of IsAlgebraic.inv_iff.

theorem IsAlgebraic.extendScalars {R : Type u_3} {S : Type u_4} {A : Type u_5} [CommRing R] [CommRing S] [Ring A] [Algebra R S] [Algebra S A] [Algebra R A] [IsScalarTower R S A] (hinj : Function.Injective (algebraMap R S)) {x : A} (A_alg : IsAlgebraic R x) :

If x is algebraic over R, then x is algebraic over S when S is an extension of R, and the map from R to S is injective.

@[deprecated IsAlgebraic.extendScalars]
theorem IsAlgebraic.tower_top_of_injective {R : Type u_3} {S : Type u_4} {A : Type u_5} [CommRing R] [CommRing S] [Ring A] [Algebra R S] [Algebra S A] [Algebra R A] [IsScalarTower R S A] (hinj : Function.Injective (algebraMap R S)) {x : A} (A_alg : IsAlgebraic R x) :

Alias of IsAlgebraic.extendScalars.


If x is algebraic over R, then x is algebraic over S when S is an extension of R, and the map from R to S is injective.

theorem IsAlgebraic.tower_top_of_subalgebra_le {R : Type u_3} {S : Type u_4} [CommRing R] [CommRing S] [Algebra R S] {A B : Subalgebra R S} (hle : A B) {x : S} (h : IsAlgebraic (↥A) x) :
IsAlgebraic (↥B) x

A special case of IsAlgebraic.extendScalars. This is extracted as a theorem because in some cases IsAlgebraic.extendScalars will just runs out of memory.

theorem Transcendental.restrictScalars {R : Type u_3} {S : Type u_4} {A : Type u_5} [CommRing R] [CommRing S] [Ring A] [Algebra R S] [Algebra S A] [Algebra R A] [IsScalarTower R S A] (hinj : Function.Injective (algebraMap R S)) {x : A} (h : Transcendental S x) :

If x is transcendental over S, then x is transcendental over R when S is an extension of R, and the map from R to S is injective.

@[deprecated Transcendental.restrictScalars]
theorem Transcendental.of_tower_top_of_injective {R : Type u_3} {S : Type u_4} {A : Type u_5} [CommRing R] [CommRing S] [Ring A] [Algebra R S] [Algebra S A] [Algebra R A] [IsScalarTower R S A] (hinj : Function.Injective (algebraMap R S)) {x : A} (h : Transcendental S x) :

Alias of Transcendental.restrictScalars.


If x is transcendental over S, then x is transcendental over R when S is an extension of R, and the map from R to S is injective.

theorem Transcendental.of_tower_top_of_subalgebra_le {R : Type u_3} {S : Type u_4} [CommRing R] [CommRing S] [Algebra R S] {A B : Subalgebra R S} (hle : A B) {x : S} (h : Transcendental (↥B) x) :

A special case of Transcendental.restrictScalars. This is extracted as a theorem because in some cases Transcendental.restrictScalars will just runs out of memory.

theorem Algebra.IsAlgebraic.extendScalars {R : Type u_3} {S : Type u_4} {A : Type u_5} [CommRing R] [CommRing S] [Ring A] [Algebra R S] [Algebra S A] [Algebra R A] [IsScalarTower R S A] (hinj : Function.Injective (algebraMap R S)) [Algebra.IsAlgebraic R A] :

If A is an algebraic algebra over R, then A is algebraic over S when S is an extension of R, and the map from R to S is injective.

@[deprecated Algebra.IsAlgebraic.extendScalars]
theorem Algebra.IsAlgebraic.tower_top_of_injective {R : Type u_3} {S : Type u_4} {A : Type u_5} [CommRing R] [CommRing S] [Ring A] [Algebra R S] [Algebra S A] [Algebra R A] [IsScalarTower R S A] (hinj : Function.Injective (algebraMap R S)) [Algebra.IsAlgebraic R A] :

Alias of Algebra.IsAlgebraic.extendScalars.


If A is an algebraic algebra over R, then A is algebraic over S when S is an extension of R, and the map from R to S is injective.

theorem IsAlgebraic.tower_top {K : Type u_1} (L : Type u_2) {A : Type u_5} [Field K] [Field L] [Ring A] [Algebra K L] [Algebra L A] [Algebra K A] [IsScalarTower K L A] {x : A} (A_alg : IsAlgebraic K x) :

If x is algebraic over K, then x is algebraic over L when L is an extension of K

Stacks Tag 09GF (part one)

theorem Transcendental.of_tower_top (K : Type u_1) {L : Type u_2} {A : Type u_5} [Field K] [Field L] [Ring A] [Algebra K L] [Algebra L A] [Algebra K A] [IsScalarTower K L A] {x : A} (h : Transcendental L x) :

If x is transcendental over L, then x is transcendental over K when L is an extension of K

theorem Algebra.IsAlgebraic.tower_top {K : Type u_1} (L : Type u_2) {A : Type u_5} [Field K] [Field L] [Ring A] [Algebra K L] [Algebra L A] [Algebra K A] [IsScalarTower K L A] [Algebra.IsAlgebraic K A] :

If A is an algebraic algebra over K, then A is algebraic over L when L is an extension of K

Stacks Tag 09GF (part two)

theorem Algebra.IsAlgebraic.tower_bot (K : Type u_6) (L : Type u_7) (A : Type u_8) [CommRing K] [Field L] [Ring A] [Algebra K L] [Algebra L A] [Algebra K A] [IsScalarTower K L A] [Nontrivial A] [Algebra.IsAlgebraic K A] :
theorem Algebra.IsAlgebraic.algHom_bijective₂ {K : Type u_1} {L : Type u_2} {R : Type u_3} [CommRing K] [Field L] [Algebra K L] [NoZeroSMulDivisors K L] [Field R] [Algebra K R] [Algebra.IsAlgebraic K L] (f : L →ₐ[K] R) (g : R →ₐ[K] L) :
noncomputable def Algebra.IsAlgebraic.algEquivEquivAlgHom (K : Type u_1) (L : Type u_2) [CommRing K] [Field L] [Algebra K L] [NoZeroSMulDivisors K L] [Algebra.IsAlgebraic K L] :
(L ≃ₐ[K] L) ≃* (L →ₐ[K] L)

Bijection between algebra equivalences and algebra homomorphisms

Equations
Instances For
    theorem IsAlgebraic.exists_nonzero_coeff_and_aeval_eq_zero {R : Type u_1} {S : Type u_2} [CommRing R] [Ring S] [Algebra R S] {s : S} (hRs : IsAlgebraic R s) (hs : s nonZeroDivisors S) :
    ∃ (q : Polynomial R), q.coeff 0 0 (Polynomial.aeval s) q = 0
    theorem IsAlgebraic.exists_nonzero_eq_adjoin_mul {R : Type u_1} {S : Type u_2} [CommRing R] [Ring S] [Algebra R S] {s : S} (hRs : IsAlgebraic R s) (hs : s nonZeroDivisors S) :
    tAlgebra.adjoin R {s}, ∃ (r : R), r 0 s * t = (algebraMap R S) r
    theorem IsAlgebraic.exists_nonzero_dvd {R : Type u_1} {S : Type u_2} [CommRing R] [Ring S] [Algebra R S] {s : S} (hRs : IsAlgebraic R s) (hs : s nonZeroDivisors S) :
    ∃ (r : R), r 0 s (algebraMap R S) r
    theorem IsAlgebraic.exists_smul_eq_mul {R : Type u_1} {S : Type u_2} [CommRing R] [Ring S] [Algebra R S] (a : S) {b : S} (hRb : IsAlgebraic R b) (hb : b nonZeroDivisors S) :
    ∃ (c : S) (d : R), d 0 d a = b * c

    A fraction (a : S) / (b : S) can be reduced to (c : S) / (d : R), if b is algebraic over R.

    theorem Algebra.IsAlgebraic.exists_smul_eq_mul (R : Type u_1) {S : Type u_2} [CommRing R] [Ring S] [Algebra R S] [NoZeroDivisors S] [Algebra.IsAlgebraic R S] (a : S) {b : S} (hb : b 0) :
    ∃ (c : S) (d : R), d 0 d a = b * c

    A fraction (a : S) / (b : S) can be reduced to (c : S) / (d : R), if b is algebraic over R.

    theorem inv_eq_of_aeval_divX_ne_zero {K : Type u_1} {L : Type u_2} [Field K] [Field L] [Algebra K L] {x : L} {p : Polynomial K} (aeval_ne : (Polynomial.aeval x) p.divX 0) :
    x⁻¹ = (Polynomial.aeval x) p.divX / ((Polynomial.aeval x) p - (algebraMap K L) (p.coeff 0))
    theorem inv_eq_of_root_of_coeff_zero_ne_zero {K : Type u_1} {L : Type u_2} [Field K] [Field L] [Algebra K L] {x : L} {p : Polynomial K} (aeval_eq : (Polynomial.aeval x) p = 0) (coeff_zero_ne : p.coeff 0 0) :
    x⁻¹ = -((Polynomial.aeval x) p.divX / (algebraMap K L) (p.coeff 0))
    theorem Subalgebra.inv_mem_of_root_of_coeff_zero_ne_zero {K : Type u_1} {L : Type u_2} [Field K] [Field L] [Algebra K L] (A : Subalgebra K L) {x : A} {p : Polynomial K} (aeval_eq : (Polynomial.aeval x) p = 0) (coeff_zero_ne : p.coeff 0 0) :
    (↑x)⁻¹ A
    theorem Subalgebra.inv_mem_of_algebraic {K : Type u_1} {L : Type u_2} [Field K] [Field L] [Algebra K L] (A : Subalgebra K L) {x : A} (hx : IsAlgebraic K x) :
    (↑x)⁻¹ A
    theorem Subalgebra.isField_of_algebraic {K : Type u_1} {L : Type u_2} [Field K] [Field L] [Algebra K L] (A : Subalgebra K L) [Algebra.IsAlgebraic K L] :
    IsField A

    In an algebraic extension L/K, an intermediate subalgebra is a field.

    Stacks Tag 0BID

    theorem Transcendental.infinite {R : Type u_1} {A : Type u_2} [CommRing R] [Ring A] [Algebra R A] [Nontrivial R] {x : A} (hx : Transcendental R x) :