Documentation

LeanCamCombi.Mathlib.Algebra.Pointwise.Stabilizer

theorem MulAction.stabilizer_union_eq_left {G : Type u_1} {α : Type u_3} [Group G] [MulAction G α] {s t : Set α} (hdisj : Disjoint s t) (hstab : MulAction.stabilizer G s MulAction.stabilizer G t) (hstab_union : MulAction.stabilizer G (s t) MulAction.stabilizer G t) :
theorem AddAction.stabilizer_union_eq_left {G : Type u_1} {α : Type u_3} [AddGroup G] [AddAction G α] {s t : Set α} (hdisj : Disjoint s t) (hstab : AddAction.stabilizer G s AddAction.stabilizer G t) (hstab_union : AddAction.stabilizer G (s t) AddAction.stabilizer G t) :
theorem MulAction.stabilizer_union_eq_right {G : Type u_1} {α : Type u_3} [Group G] [MulAction G α] {s t : Set α} (hdisj : Disjoint s t) (hstab : MulAction.stabilizer G t MulAction.stabilizer G s) (hstab_union : MulAction.stabilizer G (s t) MulAction.stabilizer G s) :
theorem AddAction.stabilizer_union_eq_right {G : Type u_1} {α : Type u_3} [AddGroup G] [AddAction G α] {s t : Set α} (hdisj : Disjoint s t) (hstab : AddAction.stabilizer G t AddAction.stabilizer G s) (hstab_union : AddAction.stabilizer G (s t) AddAction.stabilizer G s) :
theorem MulAction.mem_stabilizer_iff_subset_smul_set {G : Type u_1} {α : Type u_3} [Group G] [MulAction G α] {s : Set α} {a : G} (hs : s.Finite) :
theorem AddAction.mem_stabilizer_iff_subset_vadd_set {G : Type u_1} {α : Type u_3} [AddGroup G] [AddAction G α] {s : Set α} {a : G} (hs : s.Finite) :
theorem MulAction.mem_stabilizer_iff_smul_set_subset {G : Type u_1} {α : Type u_3} [Group G] [MulAction G α] {s : Set α} {a : G} (hs : s.Finite) :
theorem AddAction.mem_stabilizer_iff_vadd_set_subset {G : Type u_1} {α : Type u_3} [AddGroup G] [AddAction G α] {s : Set α} {a : G} (hs : s.Finite) :
theorem MulAction.op_smul_set_stabilizer_subset {G : Type u_1} [Group G] {a : G} {s : Set G} (ha : a s) :
theorem AddAction.op_vadd_set_stabilizer_subset {G : Type u_1} [AddGroup G] {a : G} {s : Set G} (ha : a s) :
theorem MulAction.stabilizer_subset_div_right {G : Type u_1} [Group G] {a : G} {s : Set G} (ha : a s) :
(MulAction.stabilizer G s) s / {a}
theorem AddAction.stabilizer_subset_sub_right {G : Type u_1} [AddGroup G] {a : G} {s : Set G} (ha : a s) :
(AddAction.stabilizer G s) s - {a}
theorem MulAction.stabilizer_finite {G : Type u_1} [Group G] {s : Set G} (hs₀ : s.Nonempty) (hs : s.Finite) :
(↑(MulAction.stabilizer G s)).Finite
theorem AddAction.stabilizer_finite {G : Type u_1} [AddGroup G] {s : Set G} (hs₀ : s.Nonempty) (hs : s.Finite) :
(↑(AddAction.stabilizer G s)).Finite
theorem MulAction.smul_set_stabilizer_subset {G : Type u_1} [CommGroup G] {s : Set G} {a : G} (ha : a s) :
theorem AddAction.vadd_set_stabilizer_subset {G : Type u_1} [AddCommGroup G] {s : Set G} {a : G} (ha : a s) :