Partial sums of geometric series #
This file determines the values of the geometric series $\sum_{i=0}^{n-1} x^i$ and
$\sum_{i=0}^{n-1} x^i y^{n-1-i}$ and variants thereof. We also provide some bounds on the
"geometric" sum of a/b^i
where a b : ℕ
.
Main statements #
geom_sum_Ico
proves that $\sum_{i=m}^{n-1} x^i=\frac{x^n-x^m}{x-1}$ in a division ring.geom_sum₂_Ico
proves that $\sum_{i=m}^{n-1} x^iy^{n - 1 - i}=\frac{x^n-y^{n-m}x^m}{x-y}$ in a field.
Several variants are recorded, generalising in particular to the case of a noncommutative ring in
which x
and y
commute. Even versions not using division or subtraction, valid in each semiring,
are recorded.
theorem
geom_sum_succ
{α : Type u}
[Semiring α]
{x : α}
{n : ℕ}
:
∑ i ∈ Finset.range (n + 1), x ^ i = x * ∑ i ∈ Finset.range n, x ^ i + 1
theorem
geom_sum_succ'
{α : Type u}
[Semiring α]
{x : α}
{n : ℕ}
:
∑ i ∈ Finset.range (n + 1), x ^ i = x ^ n + ∑ i ∈ Finset.range n, x ^ i
@[simp]
@[simp]
theorem
zero_geom_sum
{α : Type u}
[Semiring α]
{n : ℕ}
:
∑ i ∈ Finset.range n, 0 ^ i = if n = 0 then 0 else 1
theorem
op_geom_sum
{α : Type u}
[Semiring α]
(x : α)
(n : ℕ)
:
MulOpposite.op (∑ i ∈ Finset.range n, x ^ i) = ∑ i ∈ Finset.range n, MulOpposite.op x ^ i
@[simp]
theorem
op_geom_sum₂
{α : Type u}
[Semiring α]
(x y : α)
(n : ℕ)
:
∑ i ∈ Finset.range n, MulOpposite.op y ^ (n - 1 - i) * MulOpposite.op x ^ i = ∑ i ∈ Finset.range n, MulOpposite.op y ^ i * MulOpposite.op x ^ (n - 1 - i)
theorem
geom_sum₂_with_one
{α : Type u}
[Semiring α]
(x : α)
(n : ℕ)
:
∑ i ∈ Finset.range n, x ^ i * 1 ^ (n - 1 - i) = ∑ i ∈ Finset.range n, x ^ i
@[simp]
theorem
neg_one_geom_sum
{α : Type u}
[Ring α]
{n : ℕ}
:
∑ i ∈ Finset.range n, (-1) ^ i = if Even n then 0 else 1
theorem
geom_sum₂_mul_of_ge
{α : Type u}
[CommSemiring α]
[PartialOrder α]
[AddLeftReflectLE α]
[AddLeftMono α]
[ExistsAddOfLE α]
[Sub α]
[OrderedSub α]
{x y : α}
(hxy : y ≤ x)
(n : ℕ)
:
theorem
geom_sum₂_mul_of_le
{α : Type u}
[CommSemiring α]
[PartialOrder α]
[AddLeftReflectLE α]
[AddLeftMono α]
[ExistsAddOfLE α]
[Sub α]
[OrderedSub α]
{x y : α}
(hxy : x ≤ y)
(n : ℕ)
:
theorem
geom_sum_mul_of_one_le
{α : Type u}
[CommSemiring α]
[PartialOrder α]
[AddLeftReflectLE α]
[AddLeftMono α]
[ExistsAddOfLE α]
[Sub α]
[OrderedSub α]
{x : α}
(hx : 1 ≤ x)
(n : ℕ)
:
theorem
geom_sum_mul_of_le_one
{α : Type u}
[CommSemiring α]
[PartialOrder α]
[AddLeftReflectLE α]
[AddLeftMono α]
[ExistsAddOfLE α]
[Sub α]
[OrderedSub α]
{x : α}
(hx : x ≤ 1)
(n : ℕ)
:
theorem
geom₂_sum_of_gt
{α : Type u_1}
[LinearOrderedSemifield α]
[CanonicallyOrderedAdd α]
[Sub α]
[OrderedSub α]
{x y : α}
(h : y < x)
(n : ℕ)
:
theorem
geom₂_sum_of_lt
{α : Type u_1}
[LinearOrderedSemifield α]
[CanonicallyOrderedAdd α]
[Sub α]
[OrderedSub α]
{x y : α}
(h : x < y)
(n : ℕ)
:
theorem
geom_sum_of_one_lt
{α : Type u}
{x : α}
[LinearOrderedSemifield α]
[CanonicallyOrderedAdd α]
[Sub α]
[OrderedSub α]
(h : 1 < x)
(n : ℕ)
:
theorem
geom_sum_of_lt_one
{α : Type u}
{x : α}
[LinearOrderedSemifield α]
[CanonicallyOrderedAdd α]
[Sub α]
[OrderedSub α]
(h : x < 1)
(n : ℕ)
:
theorem
geom_sum_lt
{α : Type u}
{x : α}
[LinearOrderedSemifield α]
[CanonicallyOrderedAdd α]
[Sub α]
[OrderedSub α]
(h0 : x ≠ 0)
(h1 : x < 1)
(n : ℕ)
:
∑ i ∈ Finset.range n, x ^ i < (1 - x)⁻¹
theorem
geom_sum_Ico_le_of_lt_one
{α : Type u}
[LinearOrderedField α]
{x : α}
(hx : 0 ≤ x)
(h'x : x < 1)
{m n : ℕ}
:
theorem
RingHom.map_geom_sum
{α : Type u}
{β : Type u_1}
[Semiring α]
[Semiring β]
(x : α)
(n : ℕ)
(f : α →+* β)
:
f (∑ i ∈ Finset.range n, x ^ i) = ∑ i ∈ Finset.range n, f x ^ i
Geometric sum with ℕ
-division #
theorem
geom_sum_pos
{α : Type u}
{n : ℕ}
{x : α}
[StrictOrderedSemiring α]
(hx : 0 ≤ x)
(hn : n ≠ 0)
:
0 < ∑ i ∈ Finset.range n, x ^ i
theorem
geom_sum_pos_and_lt_one
{α : Type u}
{n : ℕ}
{x : α}
[StrictOrderedRing α]
(hx : x < 0)
(hx' : 0 < x + 1)
(hn : 1 < n)
:
0 < ∑ i ∈ Finset.range n, x ^ i ∧ ∑ i ∈ Finset.range n, x ^ i < 1
theorem
geom_sum_alternating_of_le_neg_one
{α : Type u}
{x : α}
[StrictOrderedRing α]
(hx : x + 1 ≤ 0)
(n : ℕ)
:
if Even n then ∑ i ∈ Finset.range n, x ^ i ≤ 0 else 1 ≤ ∑ i ∈ Finset.range n, x ^ i
theorem
geom_sum_alternating_of_lt_neg_one
{α : Type u}
{n : ℕ}
{x : α}
[StrictOrderedRing α]
(hx : x + 1 < 0)
(hn : 1 < n)
:
if Even n then ∑ i ∈ Finset.range n, x ^ i < 0 else 1 < ∑ i ∈ Finset.range n, x ^ i
theorem
geom_sum_pos'
{α : Type u}
{n : ℕ}
{x : α}
[LinearOrderedRing α]
(hx : 0 < x + 1)
(hn : n ≠ 0)
:
0 < ∑ i ∈ Finset.range n, x ^ i
theorem
Odd.geom_sum_pos
{α : Type u}
{n : ℕ}
{x : α}
[LinearOrderedRing α]
(h : Odd n)
:
0 < ∑ i ∈ Finset.range n, x ^ i
theorem
geom_sum_ne_zero
{α : Type u}
{n : ℕ}
{x : α}
[LinearOrderedRing α]
(hx : x ≠ -1)
(hn : n ≠ 0)
:
∑ i ∈ Finset.range n, x ^ i ≠ 0
theorem
geom_sum_eq_zero_iff_neg_one
{α : Type u}
{n : ℕ}
{x : α}
[LinearOrderedRing α]
(hn : n ≠ 0)
:
Value of a geometric sum over the naturals. Note: see geom_sum_mul_add
for a formulation
that avoids division and subtraction.