Documentation

Mathlib.Algebra.Ring.Idempotent

Idempotent elements of a ring #

This file proves result about idempotent elements of a ring, like:

@[simp]
theorem IsIdempotentElem.mul_one_sub_self {R : Type u_1} [NonAssocRing R] {a : R} (h : IsIdempotentElem a) :
a * (1 - a) = 0
@[simp]
theorem IsIdempotentElem.one_sub_mul_self {R : Type u_1} [NonAssocRing R] {a : R} (h : IsIdempotentElem a) :
(1 - a) * a = 0
Equations
@[simp]
theorem IsIdempotentElem.coe_compl {R : Type u_1} [NonAssocRing R] (a : { a : R // IsIdempotentElem a }) :
a = 1 - a
@[simp]
theorem IsIdempotentElem.compl_compl {R : Type u_1} [NonAssocRing R] (a : { a : R // IsIdempotentElem a }) :
@[simp]
@[simp]
theorem IsIdempotentElem.of_mul_add {R : Type u_1} [Semiring R] {a b : R} (mul : a * b = 0) (add : a + b = 1) :
theorem IsIdempotentElem.add_sub_mul_of_commute {R : Type u_1} [Ring R] {a b : R} (h : Commute a b) (hp : IsIdempotentElem a) (hq : IsIdempotentElem b) :
IsIdempotentElem (a + b - a * b)
theorem IsIdempotentElem.add_sub_mul {R : Type u_1} [CommRing R] {a b : R} (hp : IsIdempotentElem a) (hq : IsIdempotentElem b) :
IsIdempotentElem (a + b - a * b)