Documentation

Mathlib.Algebra.Star.StarRingHom

Morphisms of star rings #

This file defines a new type of morphism between (non-unital) rings A and B where both A and B are equipped with a star operation. This morphism, namely NonUnitalStarRingHom, is a direct extension of its non-starred counterpart with a field map_star which guarantees it preserves the star operation.

As with NonUnitalRingHom, the multiplications are not assumed to be associative or unital.

Main definitions #

Implementation #

This file is heavily inspired by Mathlib.Algebra.Star.StarAlgHom.

Tags #

non-unital, ring, morphism, star

Non-unital star ring homomorphisms #

structure NonUnitalStarRingHom (A : Type u_1) (B : Type u_2) [NonUnitalNonAssocSemiring A] [Star A] [NonUnitalNonAssocSemiring B] [Star B] extends A →ₙ+* B :
Type (max u_1 u_2)

A non-unital ⋆-ring homomorphism is a non-unital ring homomorphism between non-unital non-associative semirings A and B equipped with a star operation, and this homomorphism is also star-preserving.

  • toFun : AB
  • map_mul' (x y : A) : self.toFun (x * y) = self.toFun x * self.toFun y
  • map_zero' : self.toFun 0 = 0
  • map_add' (x y : A) : self.toFun (x + y) = self.toFun x + self.toFun y
  • map_star' (a : A) : self.toFun (star a) = star (self.toFun a)

    By definition, a non-unital ⋆-ring homomorphism preserves the star operation.

Instances For

    α →⋆ₙ+* β denotes the type of non-unital ring homomorphisms from α to β.

    Equations
    Instances For

      NonUnitalStarRingHomClass F A B states that F is a type of non-unital ⋆-ring homomorphisms. You should also extend this typeclass when you extend NonUnitalStarRingHom.

      Instances

        Turn an element of a type F satisfying NonUnitalStarRingHomClass F A B into an actual NonUnitalStarRingHom. This is declared as the default coercion from F to A →⋆ₙ+ B.

        Equations
        • f = { toNonUnitalRingHom := f, map_star' := }
        Instances For
          Equations

          See Note [custom simps projection]

          Equations
          Instances For
            @[simp]
            theorem NonUnitalStarRingHom.coe_coe {A : Type u_1} {B : Type u_2} [NonUnitalNonAssocSemiring A] [Star A] [NonUnitalNonAssocSemiring B] [Star B] {F : Type u_5} [FunLike F A B] [NonUnitalRingHomClass F A B] [NonUnitalStarRingHomClass F A B] (f : F) :
            f = f
            @[simp]
            theorem NonUnitalStarRingHom.coe_toNonUnitalRingHom {A : Type u_1} {B : Type u_2} [NonUnitalNonAssocSemiring A] [Star A] [NonUnitalNonAssocSemiring B] [Star B] (f : A →⋆ₙ+* B) :
            f.toNonUnitalRingHom = f
            theorem NonUnitalStarRingHom.ext {A : Type u_1} {B : Type u_2} [NonUnitalNonAssocSemiring A] [Star A] [NonUnitalNonAssocSemiring B] [Star B] {f g : A →⋆ₙ+* B} (h : ∀ (x : A), f x = g x) :
            f = g
            def NonUnitalStarRingHom.copy {A : Type u_1} {B : Type u_2} [NonUnitalNonAssocSemiring A] [Star A] [NonUnitalNonAssocSemiring B] [Star B] (f : A →⋆ₙ+* B) (f' : AB) (h : f' = f) :

            Copy of a NonUnitalStarRingHom with a new toFun equal to the old one. Useful to fix definitional equalities.

            Equations
            • f.copy f' h = { toFun := f', map_mul' := , map_zero' := , map_add' := , map_star' := }
            Instances For
              @[simp]
              theorem NonUnitalStarRingHom.coe_copy {A : Type u_1} {B : Type u_2} [NonUnitalNonAssocSemiring A] [Star A] [NonUnitalNonAssocSemiring B] [Star B] (f : A →⋆ₙ+* B) (f' : AB) (h : f' = f) :
              (f.copy f' h) = f'
              theorem NonUnitalStarRingHom.copy_eq {A : Type u_1} {B : Type u_2} [NonUnitalNonAssocSemiring A] [Star A] [NonUnitalNonAssocSemiring B] [Star B] (f : A →⋆ₙ+* B) (f' : AB) (h : f' = f) :
              f.copy f' h = f
              @[simp]
              theorem NonUnitalStarRingHom.coe_mk {A : Type u_1} {B : Type u_2} [NonUnitalNonAssocSemiring A] [Star A] [NonUnitalNonAssocSemiring B] [Star B] (f : A →ₙ+* B) (h : ∀ (a : A), f.toFun (star a) = star (f.toFun a)) :
              { toNonUnitalRingHom := f, map_star' := h } = f
              @[simp]
              theorem NonUnitalStarRingHom.mk_coe {A : Type u_1} {B : Type u_2} [NonUnitalNonAssocSemiring A] [Star A] [NonUnitalNonAssocSemiring B] [Star B] (f : A →⋆ₙ+* B) (h₁ : ∀ (x y : A), f (x * y) = f x * f y) (h₂ : { toFun := f, map_mul' := h₁ }.toFun 0 = 0) (h₃ : ∀ (x y : A), { toFun := f, map_mul' := h₁ }.toFun (x + y) = { toFun := f, map_mul' := h₁ }.toFun x + { toFun := f, map_mul' := h₁ }.toFun y) (h₄ : ∀ (a : A), { toFun := f, map_mul' := h₁, map_zero' := h₂, map_add' := h₃ }.toFun (star a) = star ({ toFun := f, map_mul' := h₁, map_zero' := h₂, map_add' := h₃ }.toFun a)) :
              { toFun := f, map_mul' := h₁, map_zero' := h₂, map_add' := h₃, map_star' := h₄ } = f

              The identity as a non-unital ⋆-ring homomorphism.

              Equations
              Instances For

                The composition of non-unital ⋆-ring homomorphisms, as a non-unital ⋆-ring homomorphism.

                Equations
                • f.comp g = { toNonUnitalRingHom := f.comp g.toNonUnitalRingHom, map_star' := }
                Instances For
                  @[simp]
                  theorem NonUnitalStarRingHom.coe_comp {A : Type u_1} {B : Type u_2} {C : Type u_3} [NonUnitalNonAssocSemiring A] [Star A] [NonUnitalNonAssocSemiring B] [Star B] [NonUnitalNonAssocSemiring C] [Star C] (f : B →⋆ₙ+* C) (g : A →⋆ₙ+* B) :
                  (f.comp g) = f g
                  @[simp]
                  theorem NonUnitalStarRingHom.comp_apply {A : Type u_1} {B : Type u_2} {C : Type u_3} [NonUnitalNonAssocSemiring A] [Star A] [NonUnitalNonAssocSemiring B] [Star B] [NonUnitalNonAssocSemiring C] [Star C] (f : B →⋆ₙ+* C) (g : A →⋆ₙ+* B) (a : A) :
                  (f.comp g) a = f (g a)
                  @[simp]
                  theorem NonUnitalStarRingHom.comp_assoc {A : Type u_1} {B : Type u_2} {C : Type u_3} {D : Type u_4} [NonUnitalNonAssocSemiring A] [Star A] [NonUnitalNonAssocSemiring B] [Star B] [NonUnitalNonAssocSemiring C] [Star C] [NonUnitalNonAssocSemiring D] [Star D] (f : C →⋆ₙ+* D) (g : B →⋆ₙ+* C) (h : A →⋆ₙ+* B) :
                  (f.comp g).comp h = f.comp (g.comp h)
                  Equations

                  Star ring equivalences #

                  structure StarRingEquiv (A : Type u_1) (B : Type u_2) [Add A] [Add B] [Mul A] [Mul B] [Star A] [Star B] extends A ≃+* B :
                  Type (max u_1 u_2)

                  A ⋆-ring equivalence is an equivalence preserving addition, multiplication, and the star operation, which allows for considering both unital and non-unital equivalences with a single structure.

                  Instances For

                    A ⋆-ring equivalence is an equivalence preserving addition, multiplication, and the star operation, which allows for considering both unital and non-unital equivalences with a single structure.

                    Equations
                    Instances For
                      class StarRingEquivClass (F : Type u_1) (A : outParam (Type u_2)) (B : outParam (Type u_3)) [Add A] [Mul A] [Star A] [Add B] [Mul B] [Star B] [EquivLike F A B] extends RingEquivClass F A B :

                      StarRingEquivClass F A B asserts F is a type of bundled ⋆-ring equivalences between A and B. You should also extend this typeclass when you extend StarRingEquiv.

                      • map_mul (f : F) (a b : A) : f (a * b) = f a * f b
                      • map_add (f : F) (a b : A) : f (a + b) = f a + f b
                      • map_star (f : F) (a : A) : f (star a) = star (f a)

                        By definition, a ⋆-ring equivalence preserves the star operation.

                      Instances
                        @[instance 50]
                        instance StarRingEquivClass.instStarHomClass {F : Type u_1} {A : Type u_2} {B : Type u_3} [Add A] [Mul A] [Star A] [Add B] [Mul B] [Star B] [EquivLike F A B] [hF : StarRingEquivClass F A B] :
                        def StarRingEquivClass.toStarRingEquiv {F : Type u_1} {A : Type u_2} {B : Type u_3} [Add A] [Mul A] [Star A] [Add B] [Mul B] [Star B] [EquivLike F A B] [RingEquivClass F A B] [StarRingEquivClass F A B] (f : F) :

                        Turn an element of a type F satisfying StarRingEquivClass F A B into an actual StarRingEquiv. This is declared as the default coercion from F to A ≃⋆+* B.

                        Equations
                        • f = { toRingEquiv := f, map_star' := }
                        Instances For
                          instance StarRingEquivClass.instCoeHead {F : Type u_1} {A : Type u_2} {B : Type u_3} [Add A] [Mul A] [Star A] [Add B] [Mul B] [Star B] [EquivLike F A B] [RingEquivClass F A B] [StarRingEquivClass F A B] :

                          Any type satisfying StarRingEquivClass can be cast into StarRingEquiv via StarRingEquivClass.toStarRingEquiv.

                          Equations
                          instance StarRingEquiv.instEquivLike {A : Type u_1} {B : Type u_2} [Add A] [Add B] [Mul A] [Mul B] [Star A] [Star B] :
                          Equations
                          instance StarRingEquiv.instRingEquivClass {A : Type u_1} {B : Type u_2} [Add A] [Add B] [Mul A] [Mul B] [Star A] [Star B] :
                          instance StarRingEquiv.instStarRingEquivClass {A : Type u_1} {B : Type u_2} [Add A] [Add B] [Mul A] [Mul B] [Star A] [Star B] :
                          instance StarRingEquiv.instFunLike {A : Type u_1} {B : Type u_2} [Add A] [Add B] [Mul A] [Mul B] [Star A] [Star B] :
                          FunLike (A ≃⋆+* B) A B

                          Helper instance for cases where the inference via EquivLike is too hard.

                          Equations
                          @[simp]
                          theorem StarRingEquiv.toRingEquiv_eq_coe {A : Type u_1} {B : Type u_2} [Add A] [Add B] [Mul A] [Mul B] [Star A] [Star B] (e : A ≃⋆+* B) :
                          e.toRingEquiv = e
                          theorem StarRingEquiv.ext {A : Type u_1} {B : Type u_2} [Add A] [Add B] [Mul A] [Mul B] [Star A] [Star B] {f g : A ≃⋆+* B} (h : ∀ (a : A), f a = g a) :
                          f = g
                          def StarRingEquiv.refl {A : Type u_1} [Add A] [Mul A] [Star A] :

                          The identity map as a star ring isomorphism.

                          Equations
                          Instances For
                            @[simp]
                            theorem StarRingEquiv.coe_refl {A : Type u_1} [Add A] [Mul A] [Star A] :
                            def StarRingEquiv.symm {A : Type u_1} {B : Type u_2} [Add A] [Add B] [Mul A] [Mul B] [Star A] [Star B] (e : A ≃⋆+* B) :

                            The inverse of a star ring isomorphism is a star ring isomorphism.

                            Equations
                            • e.symm = { toRingEquiv := e.symm, map_star' := }
                            Instances For
                              def StarRingEquiv.Simps.apply {A : Type u_1} {B : Type u_2} [Add A] [Add B] [Mul A] [Mul B] [Star A] [Star B] (e : A ≃⋆+* B) :
                              AB

                              See Note [custom simps projection]

                              Equations
                              Instances For
                                def StarRingEquiv.Simps.symm_apply {A : Type u_1} {B : Type u_2} [Add A] [Add B] [Mul A] [Mul B] [Star A] [Star B] (e : A ≃⋆+* B) :
                                BA

                                See Note [custom simps projection]

                                Equations
                                Instances For
                                  @[simp]
                                  theorem StarRingEquiv.invFun_eq_symm {A : Type u_1} {B : Type u_2} [Add A] [Add B] [Mul A] [Mul B] [Star A] [Star B] {e : A ≃⋆+* B} :
                                  EquivLike.inv e = e.symm
                                  @[simp]
                                  theorem StarRingEquiv.symm_symm {A : Type u_1} {B : Type u_2} [Add A] [Add B] [Mul A] [Mul B] [Star A] [Star B] (e : A ≃⋆+* B) :
                                  e.symm.symm = e
                                  theorem StarRingEquiv.coe_mk {A : Type u_1} {B : Type u_2} [Add A] [Add B] [Mul A] [Mul B] [Star A] [Star B] (e : A ≃+* B) (h₁ : ∀ (a : A), e.toFun (star a) = star (e.toFun a)) :
                                  { toRingEquiv := e, map_star' := h₁ } = e
                                  @[simp]
                                  theorem StarRingEquiv.mk_coe {A : Type u_1} {B : Type u_2} [Add A] [Add B] [Mul A] [Mul B] [Star A] [Star B] (e : A ≃⋆+* B) (e' : BA) (h₁ : Function.LeftInverse e' e) (h₂ : Function.RightInverse e' e) (h₃ : ∀ (x y : A), { toFun := e, invFun := e', left_inv := h₁, right_inv := h₂ }.toFun (x * y) = { toFun := e, invFun := e', left_inv := h₁, right_inv := h₂ }.toFun x * { toFun := e, invFun := e', left_inv := h₁, right_inv := h₂ }.toFun y) (h₄ : ∀ (x y : A), { toFun := e, invFun := e', left_inv := h₁, right_inv := h₂ }.toFun (x + y) = { toFun := e, invFun := e', left_inv := h₁, right_inv := h₂ }.toFun x + { toFun := e, invFun := e', left_inv := h₁, right_inv := h₂ }.toFun y) (h₅ : ∀ (a : A), { toFun := e, invFun := e', left_inv := h₁, right_inv := h₂, map_mul' := h₃, map_add' := h₄ }.toFun (star a) = star ({ toFun := e, invFun := e', left_inv := h₁, right_inv := h₂, map_mul' := h₃, map_add' := h₄ }.toFun a)) :
                                  { toFun := e, invFun := e', left_inv := h₁, right_inv := h₂, map_mul' := h₃, map_add' := h₄, map_star' := h₅ } = e
                                  def StarRingEquiv.symm_mk.aux {A : Type u_1} {B : Type u_2} [Add A] [Add B] [Mul A] [Mul B] [Star A] [Star B] (f : AB) (f' : BA) (h₁ : Function.LeftInverse f' f) (h₂ : Function.RightInverse f' f) (h₃ : ∀ (x y : A), { toFun := f, invFun := f', left_inv := h₁, right_inv := h₂ }.toFun (x * y) = { toFun := f, invFun := f', left_inv := h₁, right_inv := h₂ }.toFun x * { toFun := f, invFun := f', left_inv := h₁, right_inv := h₂ }.toFun y) (h₄ : ∀ (x y : A), { toFun := f, invFun := f', left_inv := h₁, right_inv := h₂ }.toFun (x + y) = { toFun := f, invFun := f', left_inv := h₁, right_inv := h₂ }.toFun x + { toFun := f, invFun := f', left_inv := h₁, right_inv := h₂ }.toFun y) (h₅ : ∀ (a : A), { toFun := f, invFun := f', left_inv := h₁, right_inv := h₂, map_mul' := h₃, map_add' := h₄ }.toFun (star a) = star ({ toFun := f, invFun := f', left_inv := h₁, right_inv := h₂, map_mul' := h₃, map_add' := h₄ }.toFun a)) :

                                  Auxiliary definition to avoid looping in dsimp with StarRingEquiv.symm_mk.

                                  Equations
                                  • StarRingEquiv.symm_mk.aux f f' h₁ h₂ h₃ h₄ h₅ = { toFun := f, invFun := f', left_inv := h₁, right_inv := h₂, map_mul' := h₃, map_add' := h₄, map_star' := h₅ }.symm
                                  Instances For
                                    @[simp]
                                    theorem StarRingEquiv.symm_mk {A : Type u_1} {B : Type u_2} [Add A] [Add B] [Mul A] [Mul B] [Star A] [Star B] (f : AB) (f' : BA) (h₁ : Function.LeftInverse f' f) (h₂ : Function.RightInverse f' f) (h₃ : ∀ (x y : A), { toFun := f, invFun := f', left_inv := h₁, right_inv := h₂ }.toFun (x * y) = { toFun := f, invFun := f', left_inv := h₁, right_inv := h₂ }.toFun x * { toFun := f, invFun := f', left_inv := h₁, right_inv := h₂ }.toFun y) (h₄ : ∀ (x y : A), { toFun := f, invFun := f', left_inv := h₁, right_inv := h₂ }.toFun (x + y) = { toFun := f, invFun := f', left_inv := h₁, right_inv := h₂ }.toFun x + { toFun := f, invFun := f', left_inv := h₁, right_inv := h₂ }.toFun y) (h₅ : ∀ (a : A), { toFun := f, invFun := f', left_inv := h₁, right_inv := h₂, map_mul' := h₃, map_add' := h₄ }.toFun (star a) = star ({ toFun := f, invFun := f', left_inv := h₁, right_inv := h₂, map_mul' := h₃, map_add' := h₄ }.toFun a)) :
                                    { toFun := f, invFun := f', left_inv := h₁, right_inv := h₂, map_mul' := h₃, map_add' := h₄, map_star' := h₅ }.symm = let __src := StarRingEquiv.symm_mk.aux f f' h₁ h₂ h₃ h₄ h₅; { toFun := f', invFun := f, left_inv := , right_inv := , map_mul' := , map_add' := , map_star' := }
                                    def StarRingEquiv.trans {A : Type u_1} {B : Type u_2} {C : Type u_3} [Add A] [Add B] [Mul A] [Mul B] [Star A] [Star B] [Add C] [Mul C] [Star C] (e₁ : A ≃⋆+* B) (e₂ : B ≃⋆+* C) :

                                    Transitivity of StarRingEquiv.

                                    Equations
                                    • e₁.trans e₂ = { toRingEquiv := e₁.trans e₂.toRingEquiv, map_star' := }
                                    Instances For
                                      @[simp]
                                      theorem StarRingEquiv.apply_symm_apply {A : Type u_1} {B : Type u_2} [Add A] [Add B] [Mul A] [Mul B] [Star A] [Star B] (e : A ≃⋆+* B) (x : B) :
                                      e (e.symm x) = x
                                      @[simp]
                                      theorem StarRingEquiv.symm_apply_apply {A : Type u_1} {B : Type u_2} [Add A] [Add B] [Mul A] [Mul B] [Star A] [Star B] (e : A ≃⋆+* B) (x : A) :
                                      e.symm (e x) = x
                                      @[simp]
                                      theorem StarRingEquiv.symm_trans_apply {A : Type u_1} {B : Type u_2} {C : Type u_3} [Add A] [Add B] [Mul A] [Mul B] [Star A] [Star B] [Add C] [Mul C] [Star C] (e₁ : A ≃⋆+* B) (e₂ : B ≃⋆+* C) (x : C) :
                                      (e₁.trans e₂).symm x = e₁.symm (e₂.symm x)
                                      @[simp]
                                      theorem StarRingEquiv.coe_trans {A : Type u_1} {B : Type u_2} {C : Type u_3} [Add A] [Add B] [Mul A] [Mul B] [Star A] [Star B] [Add C] [Mul C] [Star C] (e₁ : A ≃⋆+* B) (e₂ : B ≃⋆+* C) :
                                      (e₁.trans e₂) = e₂ e₁
                                      @[simp]
                                      theorem StarRingEquiv.trans_apply {A : Type u_1} {B : Type u_2} {C : Type u_3} [Add A] [Add B] [Mul A] [Mul B] [Star A] [Star B] [Add C] [Mul C] [Star C] (e₁ : A ≃⋆+* B) (e₂ : B ≃⋆+* C) (x : A) :
                                      (e₁.trans e₂) x = e₂ (e₁ x)
                                      theorem StarRingEquiv.leftInverse_symm {A : Type u_1} {B : Type u_2} [Add A] [Add B] [Mul A] [Mul B] [Star A] [Star B] (e : A ≃⋆+* B) :
                                      Function.LeftInverse e.symm e
                                      theorem StarRingEquiv.rightInverse_symm {A : Type u_1} {B : Type u_2} [Add A] [Add B] [Mul A] [Mul B] [Star A] [Star B] (e : A ≃⋆+* B) :
                                      Function.RightInverse e.symm e
                                      def StarRingEquiv.ofStarRingHom {F : Type u_1} {G : Type u_2} {A : Type u_3} {B : Type u_4} [NonUnitalNonAssocSemiring A] [Star A] [NonUnitalNonAssocSemiring B] [Star B] [FunLike F A B] [NonUnitalRingHomClass F A B] [NonUnitalStarRingHomClass F A B] [FunLike G B A] (f : F) (g : G) (h₁ : ∀ (x : A), g (f x) = x) (h₂ : ∀ (x : B), f (g x) = x) :

                                      If a (unital or non-unital) star ring morphism has an inverse, it is an isomorphism of star rings.

                                      Equations
                                      • StarRingEquiv.ofStarRingHom f g h₁ h₂ = { toFun := f, invFun := g, left_inv := h₁, right_inv := h₂, map_mul' := , map_add' := , map_star' := }
                                      Instances For
                                        @[simp]
                                        theorem StarRingEquiv.ofStarRingHom_symm_apply {F : Type u_1} {G : Type u_2} {A : Type u_3} {B : Type u_4} [NonUnitalNonAssocSemiring A] [Star A] [NonUnitalNonAssocSemiring B] [Star B] [FunLike F A B] [NonUnitalRingHomClass F A B] [NonUnitalStarRingHomClass F A B] [FunLike G B A] (f : F) (g : G) (h₁ : ∀ (x : A), g (f x) = x) (h₂ : ∀ (x : B), f (g x) = x) (a : B) :
                                        (StarRingEquiv.ofStarRingHom f g h₁ h₂).symm a = g a
                                        @[simp]
                                        theorem StarRingEquiv.ofStarRingHom_apply {F : Type u_1} {G : Type u_2} {A : Type u_3} {B : Type u_4} [NonUnitalNonAssocSemiring A] [Star A] [NonUnitalNonAssocSemiring B] [Star B] [FunLike F A B] [NonUnitalRingHomClass F A B] [NonUnitalStarRingHomClass F A B] [FunLike G B A] (f : F) (g : G) (h₁ : ∀ (x : A), g (f x) = x) (h₂ : ∀ (x : B), f (g x) = x) (a : A) :
                                        (StarRingEquiv.ofStarRingHom f g h₁ h₂) a = f a
                                        noncomputable def StarRingEquiv.ofBijective {F : Type u_1} {A : Type u_3} {B : Type u_4} [NonUnitalNonAssocSemiring A] [Star A] [NonUnitalNonAssocSemiring B] [Star B] [FunLike F A B] [NonUnitalRingHomClass F A B] [NonUnitalStarRingHomClass F A B] (f : F) (hf : Function.Bijective f) :

                                        Promote a bijective star ring homomorphism to a star ring equivalence.

                                        Equations
                                        Instances For
                                          @[simp]