Documentation

Mathlib.Analysis.Normed.Operator.Extend

Extension of continuous linear maps on Banach spaces #

In this file we provide two different ways to extend a continuous linear map defined on a dense subspace to the entire Banach space.

Moreover, we can extend a linear equivalence:

noncomputable def ContinuousLinearMap.extend {𝕜 : Type u_1} {𝕜₂ : Type u_2} {E : Type u_3} {Eₗ : Type u_4} {F : Type u_5} [AddCommGroup E] [UniformSpace E] [IsUniformAddGroup E] [AddCommGroup F] [UniformSpace F] [IsUniformAddGroup F] [T0Space F] [AddCommMonoid Eₗ] [UniformSpace Eₗ] [ContinuousAdd Eₗ] [Semiring 𝕜] [Semiring 𝕜₂] [Module 𝕜 E] [Module 𝕜₂ F] [Module 𝕜 Eₗ] [ContinuousConstSMul 𝕜 Eₗ] [ContinuousConstSMul 𝕜₂ F] {σ₁₂ : 𝕜 →+* 𝕜₂} (f : E →SL[σ₁₂] F) [CompleteSpace F] (e : E →L[𝕜] Eₗ) :
Eₗ →SL[σ₁₂] F

Extension of a continuous linear map f : E →SL[σ₁₂] F, with E a normed space and F a complete normed space, along a uniform and dense embedding e : E →L[𝕜] Eₗ.

Equations
Instances For
    @[simp]
    theorem ContinuousLinearMap.extend_eq {𝕜 : Type u_1} {𝕜₂ : Type u_2} {E : Type u_3} {Eₗ : Type u_4} {F : Type u_5} [AddCommGroup E] [UniformSpace E] [IsUniformAddGroup E] [AddCommGroup F] [UniformSpace F] [IsUniformAddGroup F] [T0Space F] [AddCommMonoid Eₗ] [UniformSpace Eₗ] [ContinuousAdd Eₗ] [Semiring 𝕜] [Semiring 𝕜₂] [Module 𝕜 E] [Module 𝕜₂ F] [Module 𝕜 Eₗ] [ContinuousConstSMul 𝕜 Eₗ] [ContinuousConstSMul 𝕜₂ F] {σ₁₂ : 𝕜 →+* 𝕜₂} (f : E →SL[σ₁₂] F) [CompleteSpace F] {e : E →L[𝕜] Eₗ} (h_dense : DenseRange e) (h_e : IsUniformInducing e) (x : E) :
    (f.extend e) (e x) = f x
    theorem ContinuousLinearMap.extend_unique {𝕜 : Type u_1} {𝕜₂ : Type u_2} {E : Type u_3} {Eₗ : Type u_4} {F : Type u_5} [AddCommGroup E] [UniformSpace E] [IsUniformAddGroup E] [AddCommGroup F] [UniformSpace F] [IsUniformAddGroup F] [T0Space F] [AddCommMonoid Eₗ] [UniformSpace Eₗ] [ContinuousAdd Eₗ] [Semiring 𝕜] [Semiring 𝕜₂] [Module 𝕜 E] [Module 𝕜₂ F] [Module 𝕜 Eₗ] [ContinuousConstSMul 𝕜 Eₗ] [ContinuousConstSMul 𝕜₂ F] {σ₁₂ : 𝕜 →+* 𝕜₂} (f : E →SL[σ₁₂] F) [CompleteSpace F] {e : E →L[𝕜] Eₗ} (h_dense : DenseRange e) (h_e : IsUniformInducing e) (g : Eₗ →SL[σ₁₂] F) (H : g.comp e = f) :
    f.extend e = g
    @[simp]
    theorem ContinuousLinearMap.extend_zero {𝕜 : Type u_1} {𝕜₂ : Type u_2} {E : Type u_3} {Eₗ : Type u_4} {F : Type u_5} [AddCommGroup E] [UniformSpace E] [IsUniformAddGroup E] [AddCommGroup F] [UniformSpace F] [IsUniformAddGroup F] [T0Space F] [AddCommMonoid Eₗ] [UniformSpace Eₗ] [ContinuousAdd Eₗ] [Semiring 𝕜] [Semiring 𝕜₂] [Module 𝕜 E] [Module 𝕜₂ F] [Module 𝕜 Eₗ] [ContinuousConstSMul 𝕜 Eₗ] [ContinuousConstSMul 𝕜₂ F] {σ₁₂ : 𝕜 →+* 𝕜₂} [CompleteSpace F] {e : E →L[𝕜] Eₗ} (h_dense : DenseRange e) (h_e : IsUniformInducing e) :
    extend 0 e = 0
    theorem ContinuousLinearMap.opNorm_extend_le {𝕜 : Type u_1} {𝕜₂ : Type u_2} {E : Type u_3} {Eₗ : Type u_4} {F : Type u_5} [NontriviallyNormedField 𝕜] [NontriviallyNormedField 𝕜₂] {σ₁₂ : 𝕜 →+* 𝕜₂} [NormedAddCommGroup E] [NormedAddCommGroup Eₗ] [NormedAddCommGroup F] [NormedSpace 𝕜 E] [NormedSpace 𝕜 Eₗ] [NormedSpace 𝕜₂ F] [CompleteSpace F] (f : E →SL[σ₁₂] F) {e : E →L[𝕜] Eₗ} {N : NNReal} [RingHomIsometric σ₁₂] (h_dense : DenseRange e) (h_e : ∀ (x : E), x N * e x) :

    If a dense embedding e : E →L[𝕜] G expands the norm by a constant factor N⁻¹, then the norm of the extension of f along e is bounded by N * ‖f‖.

    noncomputable def LinearMap.compLeftInverse {𝕜 : Type u_1} {𝕜₂ : Type u_2} {E : Type u_3} {Eₗ : Type u_4} {F : Type u_5} [DivisionRing 𝕜] [DivisionRing 𝕜₂] {σ₁₂ : 𝕜 →+* 𝕜₂} [AddCommGroup E] [NormedAddCommGroup F] [SeminormedAddCommGroup Eₗ] [Module 𝕜 E] [Module 𝕜₂ F] [Module 𝕜 Eₗ] (f : E →ₛₗ[σ₁₂] F) (g : E →ₗ[𝕜] Eₗ) :
    (range g) →SL[σ₁₂] F

    Composition of a semilinear map f with the left inverse of a linear map g as a continuous linear map provided that the norm estimate ‖f x‖ ≤ C * ‖g x‖ holds for all x : E.

    Equations
    Instances For
      theorem LinearMap.compLeftInverse_apply_of_bdd {𝕜 : Type u_1} {𝕜₂ : Type u_2} {E : Type u_3} {Eₗ : Type u_4} {F : Type u_5} [DivisionRing 𝕜] [DivisionRing 𝕜₂] {σ₁₂ : 𝕜 →+* 𝕜₂} [AddCommGroup E] [NormedAddCommGroup F] [SeminormedAddCommGroup Eₗ] [Module 𝕜 E] [Module 𝕜₂ F] [Module 𝕜 Eₗ] (f : E →ₛₗ[σ₁₂] F) (g : E →ₗ[𝕜] Eₗ) (h_norm : ∃ (C : ), ∀ (x : E), f x C * g x) (x : E) (y : Eₗ) (hx : g x = y) :
      (f.compLeftInverse g) y, = f x
      noncomputable def LinearMap.extendOfNorm {𝕜 : Type u_1} {𝕜₂ : Type u_2} {E : Type u_3} {Eₗ : Type u_4} {F : Type u_5} [NormedDivisionRing 𝕜] [NormedDivisionRing 𝕜₂] {σ₁₂ : 𝕜 →+* 𝕜₂} [AddCommGroup E] [SeminormedAddCommGroup Eₗ] [NormedAddCommGroup F] [Module 𝕜 E] [Module 𝕜₂ F] [IsBoundedSMul 𝕜₂ F] [Module 𝕜 Eₗ] [IsBoundedSMul 𝕜 Eₗ] [CompleteSpace F] (f : E →ₛₗ[σ₁₂] F) (e : E →ₗ[𝕜] Eₗ) :
      Eₗ →SL[σ₁₂] F

      Extension of a linear map f : E →ₛₗ[σ₁₂] F to a continuous linear map Eₗ →SL[σ₁₂] F, where E is a normed space and F a complete normed space, using a dense map e : E →ₗ[𝕜] Eₗ together with a bound ‖f x‖ ≤ C * ‖e x‖ for all x : E.

      Equations
      Instances For
        theorem LinearMap.extendOfNorm_eq {𝕜 : Type u_1} {𝕜₂ : Type u_2} {E : Type u_3} {Eₗ : Type u_4} {F : Type u_5} [NormedDivisionRing 𝕜] [NormedDivisionRing 𝕜₂] {σ₁₂ : 𝕜 →+* 𝕜₂} [AddCommGroup E] [SeminormedAddCommGroup Eₗ] [NormedAddCommGroup F] [Module 𝕜 E] [Module 𝕜₂ F] [IsBoundedSMul 𝕜₂ F] [Module 𝕜 Eₗ] [IsBoundedSMul 𝕜 Eₗ] [CompleteSpace F] {f : E →ₛₗ[σ₁₂] F} {e : E →ₗ[𝕜] Eₗ} (h_dense : DenseRange e) (h_norm : ∃ (C : ), ∀ (x : E), f x C * e x) (x : E) :
        (f.extendOfNorm e) (e x) = f x
        theorem LinearMap.norm_extendOfNorm_apply_le {𝕜 : Type u_1} {𝕜₂ : Type u_2} {E : Type u_3} {Eₗ : Type u_4} {F : Type u_5} [NormedDivisionRing 𝕜] [NormedDivisionRing 𝕜₂] {σ₁₂ : 𝕜 →+* 𝕜₂} [AddCommGroup E] [SeminormedAddCommGroup Eₗ] [NormedAddCommGroup F] [Module 𝕜 E] [Module 𝕜₂ F] [IsBoundedSMul 𝕜₂ F] [Module 𝕜 Eₗ] [IsBoundedSMul 𝕜 Eₗ] [CompleteSpace F] {f : E →ₛₗ[σ₁₂] F} {e : E →ₗ[𝕜] Eₗ} (h_dense : DenseRange e) (C : ) (h_norm : ∀ (x : E), f x C * e x) (x : Eₗ) :
        theorem LinearMap.extendOfNorm_unique {𝕜 : Type u_1} {𝕜₂ : Type u_2} {E : Type u_3} {Eₗ : Type u_4} {F : Type u_5} [NormedDivisionRing 𝕜] [NormedDivisionRing 𝕜₂] {σ₁₂ : 𝕜 →+* 𝕜₂} [AddCommGroup E] [SeminormedAddCommGroup Eₗ] [NormedAddCommGroup F] [Module 𝕜 E] [Module 𝕜₂ F] [IsBoundedSMul 𝕜₂ F] [Module 𝕜 Eₗ] [IsBoundedSMul 𝕜 Eₗ] [CompleteSpace F] {f : E →ₛₗ[σ₁₂] F} {e : E →ₗ[𝕜] Eₗ} (h_dense : DenseRange e) (C : ) (h_norm : ∀ (x : E), f x C * e x) (g : Eₗ →SL[σ₁₂] F) (H : g ∘ₛₗ e = f) :
        theorem LinearMap.opNorm_extendOfNorm_le {𝕜 : Type u_1} {𝕜₂ : Type u_2} {E : Type u_3} {Eₗ : Type u_4} {F : Type u_5} [NontriviallyNormedField 𝕜] [NontriviallyNormedField 𝕜₂] {σ₁₂ : 𝕜 →+* 𝕜₂} [NormedAddCommGroup F] [SeminormedAddCommGroup Eₗ] [NormedSpace 𝕜₂ F] [NormedSpace 𝕜 Eₗ] [AddCommGroup E] [Module 𝕜 E] [CompleteSpace F] {f : E →ₛₗ[σ₁₂] F} {e : E →ₗ[𝕜] Eₗ} (h_dense : DenseRange e) {C : } (hC : 0 C) (h_norm : ∀ (x : E), f x C * e x) :
        noncomputable def LinearEquiv.extend {𝕜 : Type u_1} {𝕜₂ : Type u_2} {E : Type u_3} {Eₗ : Type u_4} {F : Type u_5} {Fₗ : Type u_6} [NormedDivisionRing 𝕜] [NormedDivisionRing 𝕜₂] [AddCommGroup E] [NormedAddCommGroup Eₗ] [AddCommGroup F] [NormedAddCommGroup Fₗ] [Module 𝕜 E] [Module 𝕜 Eₗ] [IsBoundedSMul 𝕜 Eₗ] [Module 𝕜₂ F] [Module 𝕜₂ Fₗ] [IsBoundedSMul 𝕜₂ Fₗ] [CompleteSpace Eₗ] [CompleteSpace Fₗ] {σ₁₂ : 𝕜 →+* 𝕜₂} {σ₂₁ : 𝕜₂ →+* 𝕜} [RingHomInvPair σ₁₂ σ₂₁] [RingHomInvPair σ₂₁ σ₁₂] (f : E ≃ₛₗ[σ₁₂] F) (e₁ : E →ₗ[𝕜] Eₗ) (e₂ : F →ₗ[𝕜₂] Fₗ) (h_dense₁ : DenseRange e₁) (h_norm₁ : ∃ (C : ), ∀ (x : E), e₂ (f x) C * e₁ x) (h_dense₂ : DenseRange e₂) (h_norm₂ : ∃ (C : ), ∀ (x : F), e₁ (f.symm x) C * e₂ x) :
        Eₗ ≃SL[σ₁₂] Fₗ

        Extension of a linear equivalence f : E ≃ₛₗ[σ₁₂] F to a continuous linear equivalence Eₗ ≃SL[σ₁₂] Fₗ, where E and F are normed spaces and Eₗ and Fₗ are Banach spaces, using dense maps e₁ : E →ₗ[𝕜₁] Eₗ and e₂ : F →ₗ[𝕜₂] F₂ together with bounds ‖e₂ (f x)‖ ≤ C * ‖e₁ x‖ for all x : E and ‖e₁ (f.symm x)‖ ≤ C * ‖e₂ x‖ for all x : F.

        Equations
        • One or more equations did not get rendered due to their size.
        Instances For
          theorem LinearEquiv.extend_apply {𝕜 : Type u_1} {𝕜₂ : Type u_2} {E : Type u_3} {Eₗ : Type u_4} {F : Type u_5} {Fₗ : Type u_6} [NormedDivisionRing 𝕜] [NormedDivisionRing 𝕜₂] [AddCommGroup E] [NormedAddCommGroup Eₗ] [AddCommGroup F] [NormedAddCommGroup Fₗ] [Module 𝕜 E] [Module 𝕜 Eₗ] [IsBoundedSMul 𝕜 Eₗ] [Module 𝕜₂ F] [Module 𝕜₂ Fₗ] [IsBoundedSMul 𝕜₂ Fₗ] [CompleteSpace Eₗ] [CompleteSpace Fₗ] {σ₁₂ : 𝕜 →+* 𝕜₂} {σ₂₁ : 𝕜₂ →+* 𝕜} [RingHomInvPair σ₁₂ σ₂₁] [RingHomInvPair σ₂₁ σ₁₂] (f : E ≃ₛₗ[σ₁₂] F) (e₁ : E →ₗ[𝕜] Eₗ) (e₂ : F →ₗ[𝕜₂] Fₗ) (h_dense₁ : DenseRange e₁) (h_norm₁ : ∃ (C : ), ∀ (x : E), e₂ (f x) C * e₁ x) (h_dense₂ : DenseRange e₂) (h_norm₂ : ∃ (C : ), ∀ (x : F), e₁ (f.symm x) C * e₂ x) (x : Eₗ) :
          (f.extend e₁ e₂ h_dense₁ h_norm₁ h_dense₂ h_norm₂) x = ((e₂ ∘ₛₗ f).extendOfNorm e₁) x
          theorem LinearEquiv.extend_symm_apply {𝕜 : Type u_1} {𝕜₂ : Type u_2} {E : Type u_3} {Eₗ : Type u_4} {F : Type u_5} {Fₗ : Type u_6} [NormedDivisionRing 𝕜] [NormedDivisionRing 𝕜₂] [AddCommGroup E] [NormedAddCommGroup Eₗ] [AddCommGroup F] [NormedAddCommGroup Fₗ] [Module 𝕜 E] [Module 𝕜 Eₗ] [IsBoundedSMul 𝕜 Eₗ] [Module 𝕜₂ F] [Module 𝕜₂ Fₗ] [IsBoundedSMul 𝕜₂ Fₗ] [CompleteSpace Eₗ] [CompleteSpace Fₗ] {σ₁₂ : 𝕜 →+* 𝕜₂} {σ₂₁ : 𝕜₂ →+* 𝕜} [RingHomInvPair σ₁₂ σ₂₁] [RingHomInvPair σ₂₁ σ₁₂] (f : E ≃ₛₗ[σ₁₂] F) (e₁ : E →ₗ[𝕜] Eₗ) (e₂ : F →ₗ[𝕜₂] Fₗ) (h_dense₁ : DenseRange e₁) (h_norm₁ : ∃ (C : ), ∀ (x : E), e₂ (f x) C * e₁ x) (h_dense₂ : DenseRange e₂) (h_norm₂ : ∃ (C : ), ∀ (x : F), e₁ (f.symm x) C * e₂ x) (x : Fₗ) :
          (f.extend e₁ e₂ h_dense₁ h_norm₁ h_dense₂ h_norm₂).symm x = ((e₁ ∘ₛₗ f.symm).extendOfNorm e₂) x
          @[simp]
          theorem LinearEquiv.extend_eq {𝕜 : Type u_1} {𝕜₂ : Type u_2} {E : Type u_3} {Eₗ : Type u_4} {F : Type u_5} {Fₗ : Type u_6} [NormedDivisionRing 𝕜] [NormedDivisionRing 𝕜₂] [AddCommGroup E] [NormedAddCommGroup Eₗ] [AddCommGroup F] [NormedAddCommGroup Fₗ] [Module 𝕜 E] [Module 𝕜 Eₗ] [IsBoundedSMul 𝕜 Eₗ] [Module 𝕜₂ F] [Module 𝕜₂ Fₗ] [IsBoundedSMul 𝕜₂ Fₗ] [CompleteSpace Eₗ] [CompleteSpace Fₗ] {σ₁₂ : 𝕜 →+* 𝕜₂} {σ₂₁ : 𝕜₂ →+* 𝕜} [RingHomInvPair σ₁₂ σ₂₁] [RingHomInvPair σ₂₁ σ₁₂] (f : E ≃ₛₗ[σ₁₂] F) (e₁ : E →ₗ[𝕜] Eₗ) (e₂ : F →ₗ[𝕜₂] Fₗ) (h_dense₁ : DenseRange e₁) (h_norm₁ : ∃ (C : ), ∀ (x : E), e₂ (f x) C * e₁ x) (h_dense₂ : DenseRange e₂) (h_norm₂ : ∃ (C : ), ∀ (x : F), e₁ (f.symm x) C * e₂ x) (x : E) :
          (f.extend e₁ e₂ h_dense₁ h_norm₁ h_dense₂ h_norm₂) (e₁ x) = e₂ (f x)
          @[simp]
          theorem LinearEquiv.extend_symm_eq {𝕜 : Type u_1} {𝕜₂ : Type u_2} {E : Type u_3} {Eₗ : Type u_4} {F : Type u_5} {Fₗ : Type u_6} [NormedDivisionRing 𝕜] [NormedDivisionRing 𝕜₂] [AddCommGroup E] [NormedAddCommGroup Eₗ] [AddCommGroup F] [NormedAddCommGroup Fₗ] [Module 𝕜 E] [Module 𝕜 Eₗ] [IsBoundedSMul 𝕜 Eₗ] [Module 𝕜₂ F] [Module 𝕜₂ Fₗ] [IsBoundedSMul 𝕜₂ Fₗ] [CompleteSpace Eₗ] [CompleteSpace Fₗ] {σ₁₂ : 𝕜 →+* 𝕜₂} {σ₂₁ : 𝕜₂ →+* 𝕜} [RingHomInvPair σ₁₂ σ₂₁] [RingHomInvPair σ₂₁ σ₁₂] (f : E ≃ₛₗ[σ₁₂] F) (e₁ : E →ₗ[𝕜] Eₗ) (e₂ : F →ₗ[𝕜₂] Fₗ) (h_dense₁ : DenseRange e₁) (h_norm₁ : ∃ (C : ), ∀ (x : E), e₂ (f x) C * e₁ x) (h_dense₂ : DenseRange e₂) (h_norm₂ : ∃ (C : ), ∀ (x : F), e₁ (f.symm x) C * e₂ x) (x : F) :
          (f.extend e₁ e₂ h_dense₁ h_norm₁ h_dense₂ h_norm₂).symm (e₂ x) = e₁ (f.symm x)
          theorem LinearEquiv.norm_extend_le {𝕜 : Type u_1} {𝕜₂ : Type u_2} {E : Type u_3} {Eₗ : Type u_4} {F : Type u_5} {Fₗ : Type u_6} [NormedDivisionRing 𝕜] [NormedDivisionRing 𝕜₂] [AddCommGroup E] [NormedAddCommGroup Eₗ] [AddCommGroup F] [NormedAddCommGroup Fₗ] [Module 𝕜 E] [Module 𝕜 Eₗ] [IsBoundedSMul 𝕜 Eₗ] [Module 𝕜₂ F] [Module 𝕜₂ Fₗ] [IsBoundedSMul 𝕜₂ Fₗ] [CompleteSpace Eₗ] [CompleteSpace Fₗ] {σ₁₂ : 𝕜 →+* 𝕜₂} {σ₂₁ : 𝕜₂ →+* 𝕜} [RingHomInvPair σ₁₂ σ₂₁] [RingHomInvPair σ₂₁ σ₁₂] (f : E ≃ₛₗ[σ₁₂] F) (e₁ : E →ₗ[𝕜] Eₗ) (e₂ : F →ₗ[𝕜₂] Fₗ) (C : ) (h_dense₁ : DenseRange e₁) (h_norm₁ : ∀ (x : E), e₂ (f x) C * e₁ x) (h_dense₂ : DenseRange e₂) (h_norm₂ : ∃ (C : ), ∀ (x : F), e₁ (f.symm x) C * e₂ x) (x : Eₗ) :
          (f.extend e₁ e₂ h_dense₁ h_dense₂ h_norm₂) x C * x
          theorem LinearEquiv.norm_extend_symm_le {𝕜 : Type u_1} {𝕜₂ : Type u_2} {E : Type u_3} {Eₗ : Type u_4} {F : Type u_5} {Fₗ : Type u_6} [NormedDivisionRing 𝕜] [NormedDivisionRing 𝕜₂] [AddCommGroup E] [NormedAddCommGroup Eₗ] [AddCommGroup F] [NormedAddCommGroup Fₗ] [Module 𝕜 E] [Module 𝕜 Eₗ] [IsBoundedSMul 𝕜 Eₗ] [Module 𝕜₂ F] [Module 𝕜₂ Fₗ] [IsBoundedSMul 𝕜₂ Fₗ] [CompleteSpace Eₗ] [CompleteSpace Fₗ] {σ₁₂ : 𝕜 →+* 𝕜₂} {σ₂₁ : 𝕜₂ →+* 𝕜} [RingHomInvPair σ₁₂ σ₂₁] [RingHomInvPair σ₂₁ σ₁₂] (f : E ≃ₛₗ[σ₁₂] F) (e₁ : E →ₗ[𝕜] Eₗ) (e₂ : F →ₗ[𝕜₂] Fₗ) (C : ) (h_dense₁ : DenseRange e₁) (h_norm₁ : ∃ (C : ), ∀ (x : E), e₂ (f x) C * e₁ x) (h_dense₂ : DenseRange e₂) (h_norm₂ : ∀ (x : F), e₁ (f.symm x) C * e₂ x) (x : Fₗ) :
          (f.extend e₁ e₂ h_dense₁ h_norm₁ h_dense₂ ).symm x C * x
          noncomputable def LinearEquiv.extendOfIsometry {𝕜 : Type u_1} {𝕜₂ : Type u_2} {E : Type u_3} {Eₗ : Type u_4} {F : Type u_5} {Fₗ : Type u_6} [NormedField 𝕜] [NormedField 𝕜₂] [AddCommGroup E] [Module 𝕜 E] [AddCommGroup F] [Module 𝕜₂ F] [NormedAddCommGroup Eₗ] [NormedSpace 𝕜 Eₗ] [CompleteSpace Eₗ] [NormedAddCommGroup Fₗ] [NormedSpace 𝕜₂ Fₗ] [CompleteSpace Fₗ] {σ₁₂ : 𝕜 →+* 𝕜₂} {σ₂₁ : 𝕜₂ →+* 𝕜} [RingHomInvPair σ₁₂ σ₂₁] [RingHomInvPair σ₂₁ σ₁₂] (f : E ≃ₛₗ[σ₁₂] F) (e₁ : E →ₗ[𝕜] Eₗ) (e₂ : F →ₗ[𝕜₂] Fₗ) (h_dense₁ : DenseRange e₁) (h_dense₂ : DenseRange e₂) (h_norm : ∀ (x : E), e₂ (f x) = e₁ x) :
          Eₗ ≃ₛₗᵢ[σ₁₂] Fₗ

          Extend a densely defined operator that preserves the norm to a linear isometry equivalence.

          Equations
          Instances For
            theorem LinearEquiv.extendOfIsometry_apply {𝕜 : Type u_1} {𝕜₂ : Type u_2} {E : Type u_3} {Eₗ : Type u_4} {F : Type u_5} {Fₗ : Type u_6} [NormedField 𝕜] [NormedField 𝕜₂] [AddCommGroup E] [Module 𝕜 E] [AddCommGroup F] [Module 𝕜₂ F] [NormedAddCommGroup Eₗ] [NormedSpace 𝕜 Eₗ] [CompleteSpace Eₗ] [NormedAddCommGroup Fₗ] [NormedSpace 𝕜₂ Fₗ] [CompleteSpace Fₗ] {σ₁₂ : 𝕜 →+* 𝕜₂} {σ₂₁ : 𝕜₂ →+* 𝕜} [RingHomInvPair σ₁₂ σ₂₁] [RingHomInvPair σ₂₁ σ₁₂] (f : E ≃ₛₗ[σ₁₂] F) (e₁ : E →ₗ[𝕜] Eₗ) (e₂ : F →ₗ[𝕜₂] Fₗ) (h_dense₁ : DenseRange e₁) (h_dense₂ : DenseRange e₂) (h_norm : ∀ (x : E), e₂ (f x) = e₁ x) (x : Eₗ) :
            (f.extendOfIsometry e₁ e₂ h_dense₁ h_dense₂ h_norm) x = ((e₂ ∘ₛₗ f).extendOfNorm e₁) x
            theorem LinearEquiv.extendOfIsometry_symm_apply {𝕜 : Type u_1} {𝕜₂ : Type u_2} {E : Type u_3} {Eₗ : Type u_4} {F : Type u_5} {Fₗ : Type u_6} [NormedField 𝕜] [NormedField 𝕜₂] [AddCommGroup E] [Module 𝕜 E] [AddCommGroup F] [Module 𝕜₂ F] [NormedAddCommGroup Eₗ] [NormedSpace 𝕜 Eₗ] [CompleteSpace Eₗ] [NormedAddCommGroup Fₗ] [NormedSpace 𝕜₂ Fₗ] [CompleteSpace Fₗ] {σ₁₂ : 𝕜 →+* 𝕜₂} {σ₂₁ : 𝕜₂ →+* 𝕜} [RingHomInvPair σ₁₂ σ₂₁] [RingHomInvPair σ₂₁ σ₁₂] (f : E ≃ₛₗ[σ₁₂] F) (e₁ : E →ₗ[𝕜] Eₗ) (e₂ : F →ₗ[𝕜₂] Fₗ) (h_dense₁ : DenseRange e₁) (h_dense₂ : DenseRange e₂) (h_norm : ∀ (x : E), e₂ (f x) = e₁ x) (x : Fₗ) :
            (f.extendOfIsometry e₁ e₂ h_dense₁ h_dense₂ h_norm).symm x = ((e₁ ∘ₛₗ f.symm).extendOfNorm e₂) x
            @[simp]
            theorem LinearEquiv.extendOfIsometry_eq {𝕜 : Type u_1} {𝕜₂ : Type u_2} {E : Type u_3} {Eₗ : Type u_4} {F : Type u_5} {Fₗ : Type u_6} [NormedField 𝕜] [NormedField 𝕜₂] [AddCommGroup E] [Module 𝕜 E] [AddCommGroup F] [Module 𝕜₂ F] [NormedAddCommGroup Eₗ] [NormedSpace 𝕜 Eₗ] [CompleteSpace Eₗ] [NormedAddCommGroup Fₗ] [NormedSpace 𝕜₂ Fₗ] [CompleteSpace Fₗ] {σ₁₂ : 𝕜 →+* 𝕜₂} {σ₂₁ : 𝕜₂ →+* 𝕜} [RingHomInvPair σ₁₂ σ₂₁] [RingHomInvPair σ₂₁ σ₁₂] (f : E ≃ₛₗ[σ₁₂] F) (e₁ : E →ₗ[𝕜] Eₗ) (e₂ : F →ₗ[𝕜₂] Fₗ) (h_dense₁ : DenseRange e₁) (h_dense₂ : DenseRange e₂) (h_norm : ∀ (x : E), e₂ (f x) = e₁ x) (x : E) :
            (f.extendOfIsometry e₁ e₂ h_dense₁ h_dense₂ h_norm) (e₁ x) = e₂ (f x)
            @[simp]
            theorem LinearEquiv.extendOfIsometry_symm_eq {𝕜 : Type u_1} {𝕜₂ : Type u_2} {E : Type u_3} {Eₗ : Type u_4} {F : Type u_5} {Fₗ : Type u_6} [NormedField 𝕜] [NormedField 𝕜₂] [AddCommGroup E] [Module 𝕜 E] [AddCommGroup F] [Module 𝕜₂ F] [NormedAddCommGroup Eₗ] [NormedSpace 𝕜 Eₗ] [CompleteSpace Eₗ] [NormedAddCommGroup Fₗ] [NormedSpace 𝕜₂ Fₗ] [CompleteSpace Fₗ] {σ₁₂ : 𝕜 →+* 𝕜₂} {σ₂₁ : 𝕜₂ →+* 𝕜} [RingHomInvPair σ₁₂ σ₂₁] [RingHomInvPair σ₂₁ σ₁₂] (f : E ≃ₛₗ[σ₁₂] F) (e₁ : E →ₗ[𝕜] Eₗ) (e₂ : F →ₗ[𝕜₂] Fₗ) (h_dense₁ : DenseRange e₁) (h_dense₂ : DenseRange e₂) (h_norm : ∀ (x : E), e₂ (f x) = e₁ x) (x : F) :
            (f.extendOfIsometry e₁ e₂ h_dense₁ h_dense₂ h_norm).symm (e₂ x) = e₁ (f.symm x)