Extension of continuous linear maps on Banach spaces #
In this file we provide two different ways to extend a continuous linear map defined on a dense subspace to the entire Banach space.
ContinuousLinearMap.extend: Extendf : E →SL[σ₁₂] Fto a continuous linear mapEₗ →SL[σ₁₂] F, wheree : E →ₗ[𝕜] Eₗis a dense map that isIsUniformInducing.LinearMap.extendOfNorm: Extendf : E →ₛₗ[σ₁₂] Fto a continuous linear mapEₗ →SL[σ₁₂] F, wheree : E →ₗ[𝕜] Eₗis a dense map and we have the norm estimate‖f x‖ ≤ C * ‖e x‖for allx : E.
Moreover, we can extend a linear equivalence:
LinearEquiv.extend: Extend a linear equivalence between normed spaces to a continuous linear equivalence between Banach spaces with two dense mapse₁ande₂and the corresponding norm estimates.LinearEquiv.extendOfIsometry: Extendf : E ≃ₗ[𝕜] Fto a linear isometry equivalenceEₗ →ₗᵢ[𝕜] Fₗ, wheree₁ : E →ₗ[𝕜] Eₗande₂ : F →ₗ[𝕜] Fₗare dense maps into Banach spaces andfpreserves the norm.
Extension of a continuous linear map f : E →SL[σ₁₂] F, with E a normed space and F a
complete normed space, along a uniform and dense embedding e : E →L[𝕜] Eₗ.
Equations
- f.extend e = if h : DenseRange ⇑e ∧ IsUniformInducing ⇑e then have cont := ⋯; have eq := ⋯; { toFun := ⋯.extend ⇑f, map_add' := ⋯, map_smul' := ⋯, cont := cont } else 0
Instances For
If a dense embedding e : E →L[𝕜] G expands the norm by a constant factor N⁻¹, then the
norm of the extension of f along e is bounded by N * ‖f‖.
Composition of a semilinear map f with the left inverse of a linear map g as a continuous
linear map provided that the norm estimate ‖f x‖ ≤ C * ‖g x‖ holds for all x : E.
Equations
- f.compLeftInverse g = if h : ∃ (C : ℝ), ∀ (x : E), ‖f x‖ ≤ C * ‖g x‖ then ((LinearMap.ker g).liftQ f ⋯ ∘ₛₗ ↑g.quotKerEquivRange.symm).mkContinuousOfExistsBound ⋯ else 0
Instances For
Extension of a linear map f : E →ₛₗ[σ₁₂] F to a continuous linear map Eₗ →SL[σ₁₂] F,
where E is a normed space and F a complete normed space, using a dense map e : E →ₗ[𝕜] Eₗ
together with a bound ‖f x‖ ≤ C * ‖e x‖ for all x : E.
Equations
- f.extendOfNorm e = (f.compLeftInverse e).extend (LinearMap.range e).subtypeL
Instances For
Extension of a linear equivalence f : E ≃ₛₗ[σ₁₂] F to a continuous linear equivalence
Eₗ ≃SL[σ₁₂] Fₗ, where E and F are normed spaces and Eₗ and Fₗ are Banach spaces,
using dense maps e₁ : E →ₗ[𝕜₁] Eₗ and e₂ : F →ₗ[𝕜₂] F₂ together with bounds
‖e₂ (f x)‖ ≤ C * ‖e₁ x‖ for all x : E and ‖e₁ (f.symm x)‖ ≤ C * ‖e₂ x‖ for all x : F.
Equations
- One or more equations did not get rendered due to their size.
Instances For
Extend a densely defined operator that preserves the norm to a linear isometry equivalence.
Equations
- f.extendOfIsometry e₁ e₂ h_dense₁ h_dense₂ h_norm = { toLinearEquiv := (f.extend e₁ e₂ h_dense₁ ⋯ h_dense₂ ⋯).toLinearEquiv, norm_map' := ⋯ }