Documentation

Mathlib.Analysis.NormedSpace.OperatorNorm.Bilinear

Operator norm: bilinear maps #

This file contains lemmas concerning operator norm as applied to bilinear maps E × F → G, interpreted as linear maps E → F → G as usual (and similarly for semilinear variants).

theorem ContinuousLinearMap.opNorm_ext {𝕜 : Type u_1} {𝕜₂ : Type u_2} {𝕜₃ : Type u_3} {E : Type u_4} {F : Type u_6} {G : Type u_8} [SeminormedAddCommGroup E] [SeminormedAddCommGroup F] [SeminormedAddCommGroup G] [NontriviallyNormedField 𝕜] [NontriviallyNormedField 𝕜₂] [NontriviallyNormedField 𝕜₃] [NormedSpace 𝕜 E] [NormedSpace 𝕜₂ F] [NormedSpace 𝕜₃ G] {σ₁₂ : 𝕜 →+* 𝕜₂} {σ₁₃ : 𝕜 →+* 𝕜₃} [RingHomIsometric σ₁₃] (f : E →SL[σ₁₂] F) (g : E →SL[σ₁₃] G) (h : ∀ (x : E), f x = g x) :
theorem ContinuousLinearMap.opNorm_le_bound₂ {𝕜 : Type u_1} {𝕜₂ : Type u_2} {𝕜₃ : Type u_3} {E : Type u_4} {F : Type u_6} {G : Type u_8} [SeminormedAddCommGroup E] [SeminormedAddCommGroup F] [SeminormedAddCommGroup G] [NontriviallyNormedField 𝕜] [NontriviallyNormedField 𝕜₂] [NontriviallyNormedField 𝕜₃] [NormedSpace 𝕜 E] [NormedSpace 𝕜₂ F] [NormedSpace 𝕜₃ G] {σ₂₃ : 𝕜₂ →+* 𝕜₃} {σ₁₃ : 𝕜 →+* 𝕜₃} [RingHomIsometric σ₂₃] (f : E →SL[σ₁₃] F →SL[σ₂₃] G) {C : } (h0 : 0 C) (hC : ∀ (x : E) (y : F), (f x) y C * x * y) :
theorem ContinuousLinearMap.le_opNorm₂ {𝕜 : Type u_1} {𝕜₂ : Type u_2} {𝕜₃ : Type u_3} {E : Type u_4} {F : Type u_6} {G : Type u_8} [SeminormedAddCommGroup E] [SeminormedAddCommGroup F] [SeminormedAddCommGroup G] [NontriviallyNormedField 𝕜] [NontriviallyNormedField 𝕜₂] [NontriviallyNormedField 𝕜₃] [NormedSpace 𝕜 E] [NormedSpace 𝕜₂ F] [NormedSpace 𝕜₃ G] {σ₂₃ : 𝕜₂ →+* 𝕜₃} {σ₁₃ : 𝕜 →+* 𝕜₃} [RingHomIsometric σ₂₃] [RingHomIsometric σ₁₃] (f : E →SL[σ₁₃] F →SL[σ₂₃] G) (x : E) (y : F) :
theorem ContinuousLinearMap.le_of_opNorm₂_le_of_le {𝕜 : Type u_1} {𝕜₂ : Type u_2} {𝕜₃ : Type u_3} {E : Type u_4} {F : Type u_6} {G : Type u_8} [SeminormedAddCommGroup E] [SeminormedAddCommGroup F] [SeminormedAddCommGroup G] [NontriviallyNormedField 𝕜] [NontriviallyNormedField 𝕜₂] [NontriviallyNormedField 𝕜₃] [NormedSpace 𝕜 E] [NormedSpace 𝕜₂ F] [NormedSpace 𝕜₃ G] {σ₂₃ : 𝕜₂ →+* 𝕜₃} {σ₁₃ : 𝕜 →+* 𝕜₃} [RingHomIsometric σ₂₃] [RingHomIsometric σ₁₃] (f : E →SL[σ₁₃] F →SL[σ₂₃] G) {x : E} {y : F} {a b c : } (hf : f a) (hx : x b) (hy : y c) :
(f x) y a * b * c
theorem LinearMap.norm_mkContinuous₂_aux {𝕜 : Type u_1} {𝕜₂ : Type u_2} {𝕜₃ : Type u_3} {E : Type u_4} {F : Type u_6} {G : Type u_8} [SeminormedAddCommGroup E] [SeminormedAddCommGroup F] [SeminormedAddCommGroup G] [NontriviallyNormedField 𝕜] [NontriviallyNormedField 𝕜₂] [NontriviallyNormedField 𝕜₃] [NormedSpace 𝕜 E] [NormedSpace 𝕜₂ F] [NormedSpace 𝕜₃ G] {σ₂₃ : 𝕜₂ →+* 𝕜₃} {σ₁₃ : 𝕜 →+* 𝕜₃} (f : E →ₛₗ[σ₁₃] F →ₛₗ[σ₂₃] G) (C : ) (h : ∀ (x : E) (y : F), (f x) y C * x * y) (x : E) :
(f x).mkContinuous (C * x) (C 0) * x
noncomputable def LinearMap.mkContinuousOfExistsBound₂ {𝕜 : Type u_1} {𝕜₂ : Type u_2} {𝕜₃ : Type u_3} {E : Type u_4} {F : Type u_6} {G : Type u_8} [SeminormedAddCommGroup E] [SeminormedAddCommGroup F] [SeminormedAddCommGroup G] [NontriviallyNormedField 𝕜] [NontriviallyNormedField 𝕜₂] [NontriviallyNormedField 𝕜₃] [NormedSpace 𝕜 E] [NormedSpace 𝕜₂ F] [NormedSpace 𝕜₃ G] {σ₂₃ : 𝕜₂ →+* 𝕜₃} {σ₁₃ : 𝕜 →+* 𝕜₃} [RingHomIsometric σ₂₃] (f : E →ₛₗ[σ₁₃] F →ₛₗ[σ₂₃] G) (h : ∃ (C : ), ∀ (x : E) (y : F), (f x) y C * x * y) :
E →SL[σ₁₃] F →SL[σ₂₃] G

Create a bilinear map (represented as a map E →L[𝕜] F →L[𝕜] G) from the corresponding linear map and existence of a bound on the norm of the image. The linear map can be constructed using LinearMap.mk₂.

If you have an explicit bound, use LinearMap.mkContinuous₂ instead, as a norm estimate will follow automatically in LinearMap.mkContinuous₂_norm_le.

Equations
  • f.mkContinuousOfExistsBound₂ h = { toFun := fun (x : E) => (f x).mkContinuousOfExistsBound , map_add' := , map_smul' := }.mkContinuousOfExistsBound
Instances For
    noncomputable def LinearMap.mkContinuous₂ {𝕜 : Type u_1} {𝕜₂ : Type u_2} {𝕜₃ : Type u_3} {E : Type u_4} {F : Type u_6} {G : Type u_8} [SeminormedAddCommGroup E] [SeminormedAddCommGroup F] [SeminormedAddCommGroup G] [NontriviallyNormedField 𝕜] [NontriviallyNormedField 𝕜₂] [NontriviallyNormedField 𝕜₃] [NormedSpace 𝕜 E] [NormedSpace 𝕜₂ F] [NormedSpace 𝕜₃ G] {σ₂₃ : 𝕜₂ →+* 𝕜₃} {σ₁₃ : 𝕜 →+* 𝕜₃} [RingHomIsometric σ₂₃] (f : E →ₛₗ[σ₁₃] F →ₛₗ[σ₂₃] G) (C : ) (hC : ∀ (x : E) (y : F), (f x) y C * x * y) :
    E →SL[σ₁₃] F →SL[σ₂₃] G

    Create a bilinear map (represented as a map E →L[𝕜] F →L[𝕜] G) from the corresponding linear map and a bound on the norm of the image. The linear map can be constructed using LinearMap.mk₂. Lemmas LinearMap.mkContinuous₂_norm_le' and LinearMap.mkContinuous₂_norm_le provide estimates on the norm of an operator constructed using this function.

    Equations
    • f.mkContinuous₂ C hC = f.mkContinuousOfExistsBound₂
    Instances For
      @[simp]
      theorem LinearMap.mkContinuous₂_apply {𝕜 : Type u_1} {𝕜₂ : Type u_2} {𝕜₃ : Type u_3} {E : Type u_4} {F : Type u_6} {G : Type u_8} [SeminormedAddCommGroup E] [SeminormedAddCommGroup F] [SeminormedAddCommGroup G] [NontriviallyNormedField 𝕜] [NontriviallyNormedField 𝕜₂] [NontriviallyNormedField 𝕜₃] [NormedSpace 𝕜 E] [NormedSpace 𝕜₂ F] [NormedSpace 𝕜₃ G] {σ₂₃ : 𝕜₂ →+* 𝕜₃} {σ₁₃ : 𝕜 →+* 𝕜₃} [RingHomIsometric σ₂₃] (f : E →ₛₗ[σ₁₃] F →ₛₗ[σ₂₃] G) {C : } (hC : ∀ (x : E) (y : F), (f x) y C * x * y) (x : E) (y : F) :
      ((f.mkContinuous₂ C hC) x) y = (f x) y
      theorem LinearMap.mkContinuous₂_norm_le' {𝕜 : Type u_1} {𝕜₂ : Type u_2} {𝕜₃ : Type u_3} {E : Type u_4} {F : Type u_6} {G : Type u_8} [SeminormedAddCommGroup E] [SeminormedAddCommGroup F] [SeminormedAddCommGroup G] [NontriviallyNormedField 𝕜] [NontriviallyNormedField 𝕜₂] [NontriviallyNormedField 𝕜₃] [NormedSpace 𝕜 E] [NormedSpace 𝕜₂ F] [NormedSpace 𝕜₃ G] {σ₂₃ : 𝕜₂ →+* 𝕜₃} {σ₁₃ : 𝕜 →+* 𝕜₃} [RingHomIsometric σ₂₃] (f : E →ₛₗ[σ₁₃] F →ₛₗ[σ₂₃] G) {C : } (hC : ∀ (x : E) (y : F), (f x) y C * x * y) :
      f.mkContinuous₂ C hC C 0
      theorem LinearMap.mkContinuous₂_norm_le {𝕜 : Type u_1} {𝕜₂ : Type u_2} {𝕜₃ : Type u_3} {E : Type u_4} {F : Type u_6} {G : Type u_8} [SeminormedAddCommGroup E] [SeminormedAddCommGroup F] [SeminormedAddCommGroup G] [NontriviallyNormedField 𝕜] [NontriviallyNormedField 𝕜₂] [NontriviallyNormedField 𝕜₃] [NormedSpace 𝕜 E] [NormedSpace 𝕜₂ F] [NormedSpace 𝕜₃ G] {σ₂₃ : 𝕜₂ →+* 𝕜₃} {σ₁₃ : 𝕜 →+* 𝕜₃} [RingHomIsometric σ₂₃] (f : E →ₛₗ[σ₁₃] F →ₛₗ[σ₂₃] G) {C : } (h0 : 0 C) (hC : ∀ (x : E) (y : F), (f x) y C * x * y) :
      f.mkContinuous₂ C hC C
      noncomputable def ContinuousLinearMap.flip {𝕜 : Type u_1} {𝕜₂ : Type u_2} {𝕜₃ : Type u_3} {E : Type u_4} {F : Type u_6} {G : Type u_8} [SeminormedAddCommGroup E] [SeminormedAddCommGroup F] [SeminormedAddCommGroup G] [NontriviallyNormedField 𝕜] [NontriviallyNormedField 𝕜₂] [NontriviallyNormedField 𝕜₃] [NormedSpace 𝕜 E] [NormedSpace 𝕜₂ F] [NormedSpace 𝕜₃ G] {σ₂₃ : 𝕜₂ →+* 𝕜₃} {σ₁₃ : 𝕜 →+* 𝕜₃} [RingHomIsometric σ₂₃] [RingHomIsometric σ₁₃] (f : E →SL[σ₁₃] F →SL[σ₂₃] G) :
      F →SL[σ₂₃] E →SL[σ₁₃] G

      Flip the order of arguments of a continuous bilinear map. For a version bundled as LinearIsometryEquiv, see ContinuousLinearMap.flipL.

      Equations
      Instances For
        @[simp]
        theorem ContinuousLinearMap.flip_apply {𝕜 : Type u_1} {𝕜₂ : Type u_2} {𝕜₃ : Type u_3} {E : Type u_4} {F : Type u_6} {G : Type u_8} [SeminormedAddCommGroup E] [SeminormedAddCommGroup F] [SeminormedAddCommGroup G] [NontriviallyNormedField 𝕜] [NontriviallyNormedField 𝕜₂] [NontriviallyNormedField 𝕜₃] [NormedSpace 𝕜 E] [NormedSpace 𝕜₂ F] [NormedSpace 𝕜₃ G] {σ₂₃ : 𝕜₂ →+* 𝕜₃} {σ₁₃ : 𝕜 →+* 𝕜₃} [RingHomIsometric σ₂₃] [RingHomIsometric σ₁₃] (f : E →SL[σ₁₃] F →SL[σ₂₃] G) (x : E) (y : F) :
        (f.flip y) x = (f x) y
        @[simp]
        theorem ContinuousLinearMap.flip_flip {𝕜 : Type u_1} {𝕜₂ : Type u_2} {𝕜₃ : Type u_3} {E : Type u_4} {F : Type u_6} {G : Type u_8} [SeminormedAddCommGroup E] [SeminormedAddCommGroup F] [SeminormedAddCommGroup G] [NontriviallyNormedField 𝕜] [NontriviallyNormedField 𝕜₂] [NontriviallyNormedField 𝕜₃] [NormedSpace 𝕜 E] [NormedSpace 𝕜₂ F] [NormedSpace 𝕜₃ G] {σ₂₃ : 𝕜₂ →+* 𝕜₃} {σ₁₃ : 𝕜 →+* 𝕜₃} [RingHomIsometric σ₂₃] [RingHomIsometric σ₁₃] (f : E →SL[σ₁₃] F →SL[σ₂₃] G) :
        f.flip.flip = f
        @[simp]
        theorem ContinuousLinearMap.opNorm_flip {𝕜 : Type u_1} {𝕜₂ : Type u_2} {𝕜₃ : Type u_3} {E : Type u_4} {F : Type u_6} {G : Type u_8} [SeminormedAddCommGroup E] [SeminormedAddCommGroup F] [SeminormedAddCommGroup G] [NontriviallyNormedField 𝕜] [NontriviallyNormedField 𝕜₂] [NontriviallyNormedField 𝕜₃] [NormedSpace 𝕜 E] [NormedSpace 𝕜₂ F] [NormedSpace 𝕜₃ G] {σ₂₃ : 𝕜₂ →+* 𝕜₃} {σ₁₃ : 𝕜 →+* 𝕜₃} [RingHomIsometric σ₂₃] [RingHomIsometric σ₁₃] (f : E →SL[σ₁₃] F →SL[σ₂₃] G) :
        f.flip = f
        @[simp]
        theorem ContinuousLinearMap.flip_add {𝕜 : Type u_1} {𝕜₂ : Type u_2} {𝕜₃ : Type u_3} {E : Type u_4} {F : Type u_6} {G : Type u_8} [SeminormedAddCommGroup E] [SeminormedAddCommGroup F] [SeminormedAddCommGroup G] [NontriviallyNormedField 𝕜] [NontriviallyNormedField 𝕜₂] [NontriviallyNormedField 𝕜₃] [NormedSpace 𝕜 E] [NormedSpace 𝕜₂ F] [NormedSpace 𝕜₃ G] {σ₂₃ : 𝕜₂ →+* 𝕜₃} {σ₁₃ : 𝕜 →+* 𝕜₃} [RingHomIsometric σ₂₃] [RingHomIsometric σ₁₃] (f g : E →SL[σ₁₃] F →SL[σ₂₃] G) :
        (f + g).flip = f.flip + g.flip
        @[simp]
        theorem ContinuousLinearMap.flip_smul {𝕜 : Type u_1} {𝕜₂ : Type u_2} {𝕜₃ : Type u_3} {E : Type u_4} {F : Type u_6} {G : Type u_8} [SeminormedAddCommGroup E] [SeminormedAddCommGroup F] [SeminormedAddCommGroup G] [NontriviallyNormedField 𝕜] [NontriviallyNormedField 𝕜₂] [NontriviallyNormedField 𝕜₃] [NormedSpace 𝕜 E] [NormedSpace 𝕜₂ F] [NormedSpace 𝕜₃ G] {σ₂₃ : 𝕜₂ →+* 𝕜₃} {σ₁₃ : 𝕜 →+* 𝕜₃} [RingHomIsometric σ₂₃] [RingHomIsometric σ₁₃] (c : 𝕜₃) (f : E →SL[σ₁₃] F →SL[σ₂₃] G) :
        (c f).flip = c f.flip
        noncomputable def ContinuousLinearMap.flipₗᵢ' {𝕜 : Type u_1} {𝕜₂ : Type u_2} {𝕜₃ : Type u_3} (E : Type u_4) (F : Type u_6) (G : Type u_8) [SeminormedAddCommGroup E] [SeminormedAddCommGroup F] [SeminormedAddCommGroup G] [NontriviallyNormedField 𝕜] [NontriviallyNormedField 𝕜₂] [NontriviallyNormedField 𝕜₃] [NormedSpace 𝕜 E] [NormedSpace 𝕜₂ F] [NormedSpace 𝕜₃ G] (σ₂₃ : 𝕜₂ →+* 𝕜₃) (σ₁₃ : 𝕜 →+* 𝕜₃) [RingHomIsometric σ₂₃] [RingHomIsometric σ₁₃] :
        (E →SL[σ₁₃] F →SL[σ₂₃] G) ≃ₗᵢ[𝕜₃] F →SL[σ₂₃] E →SL[σ₁₃] G

        Flip the order of arguments of a continuous bilinear map. This is a version bundled as a LinearIsometryEquiv. For an unbundled version see ContinuousLinearMap.flip.

        Equations
        • One or more equations did not get rendered due to their size.
        Instances For
          @[simp]
          theorem ContinuousLinearMap.flipₗᵢ'_symm {𝕜 : Type u_1} {𝕜₂ : Type u_2} {𝕜₃ : Type u_3} {E : Type u_4} {F : Type u_6} {G : Type u_8} [SeminormedAddCommGroup E] [SeminormedAddCommGroup F] [SeminormedAddCommGroup G] [NontriviallyNormedField 𝕜] [NontriviallyNormedField 𝕜₂] [NontriviallyNormedField 𝕜₃] [NormedSpace 𝕜 E] [NormedSpace 𝕜₂ F] [NormedSpace 𝕜₃ G] {σ₂₃ : 𝕜₂ →+* 𝕜₃} {σ₁₃ : 𝕜 →+* 𝕜₃} [RingHomIsometric σ₂₃] [RingHomIsometric σ₁₃] :
          (ContinuousLinearMap.flipₗᵢ' E F G σ₂₃ σ₁₃).symm = ContinuousLinearMap.flipₗᵢ' F E G σ₁₃ σ₂₃
          @[simp]
          theorem ContinuousLinearMap.coe_flipₗᵢ' {𝕜 : Type u_1} {𝕜₂ : Type u_2} {𝕜₃ : Type u_3} {E : Type u_4} {F : Type u_6} {G : Type u_8} [SeminormedAddCommGroup E] [SeminormedAddCommGroup F] [SeminormedAddCommGroup G] [NontriviallyNormedField 𝕜] [NontriviallyNormedField 𝕜₂] [NontriviallyNormedField 𝕜₃] [NormedSpace 𝕜 E] [NormedSpace 𝕜₂ F] [NormedSpace 𝕜₃ G] {σ₂₃ : 𝕜₂ →+* 𝕜₃} {σ₁₃ : 𝕜 →+* 𝕜₃} [RingHomIsometric σ₂₃] [RingHomIsometric σ₁₃] :
          noncomputable def ContinuousLinearMap.flipₗᵢ (𝕜 : Type u_1) (E : Type u_4) (Fₗ : Type u_7) (Gₗ : Type u_9) [SeminormedAddCommGroup E] [SeminormedAddCommGroup Fₗ] [SeminormedAddCommGroup Gₗ] [NontriviallyNormedField 𝕜] [NormedSpace 𝕜 E] [NormedSpace 𝕜 Fₗ] [NormedSpace 𝕜 Gₗ] :
          (E →L[𝕜] Fₗ →L[𝕜] Gₗ) ≃ₗᵢ[𝕜] Fₗ →L[𝕜] E →L[𝕜] Gₗ

          Flip the order of arguments of a continuous bilinear map. This is a version bundled as a LinearIsometryEquiv. For an unbundled version see ContinuousLinearMap.flip.

          Equations
          Instances For
            @[simp]
            theorem ContinuousLinearMap.flipₗᵢ_symm {𝕜 : Type u_1} {E : Type u_4} {Fₗ : Type u_7} {Gₗ : Type u_9} [SeminormedAddCommGroup E] [SeminormedAddCommGroup Fₗ] [SeminormedAddCommGroup Gₗ] [NontriviallyNormedField 𝕜] [NormedSpace 𝕜 E] [NormedSpace 𝕜 Fₗ] [NormedSpace 𝕜 Gₗ] :
            (ContinuousLinearMap.flipₗᵢ 𝕜 E Fₗ Gₗ).symm = ContinuousLinearMap.flipₗᵢ 𝕜 Fₗ E Gₗ
            @[simp]
            theorem ContinuousLinearMap.coe_flipₗᵢ {𝕜 : Type u_1} {E : Type u_4} {Fₗ : Type u_7} {Gₗ : Type u_9} [SeminormedAddCommGroup E] [SeminormedAddCommGroup Fₗ] [SeminormedAddCommGroup Gₗ] [NontriviallyNormedField 𝕜] [NormedSpace 𝕜 E] [NormedSpace 𝕜 Fₗ] [NormedSpace 𝕜 Gₗ] :
            noncomputable def ContinuousLinearMap.apply' {𝕜 : Type u_1} {𝕜₂ : Type u_2} {E : Type u_4} (F : Type u_6) [SeminormedAddCommGroup E] [SeminormedAddCommGroup F] [NontriviallyNormedField 𝕜] [NontriviallyNormedField 𝕜₂] [NormedSpace 𝕜 E] [NormedSpace 𝕜₂ F] (σ₁₂ : 𝕜 →+* 𝕜₂) [RingHomIsometric σ₁₂] :
            E →SL[σ₁₂] (E →SL[σ₁₂] F) →L[𝕜₂] F

            The continuous semilinear map obtained by applying a continuous semilinear map at a given vector.

            This is the continuous version of LinearMap.applyₗ.

            Equations
            Instances For
              @[simp]
              theorem ContinuousLinearMap.apply_apply' {𝕜 : Type u_1} {𝕜₂ : Type u_2} {E : Type u_4} {F : Type u_6} [SeminormedAddCommGroup E] [SeminormedAddCommGroup F] [NontriviallyNormedField 𝕜] [NontriviallyNormedField 𝕜₂] [NormedSpace 𝕜 E] [NormedSpace 𝕜₂ F] {σ₁₂ : 𝕜 →+* 𝕜₂} [RingHomIsometric σ₁₂] (v : E) (f : E →SL[σ₁₂] F) :
              ((ContinuousLinearMap.apply' F σ₁₂) v) f = f v
              noncomputable def ContinuousLinearMap.apply (𝕜 : Type u_1) {E : Type u_4} (Fₗ : Type u_7) [SeminormedAddCommGroup E] [SeminormedAddCommGroup Fₗ] [NontriviallyNormedField 𝕜] [NormedSpace 𝕜 E] [NormedSpace 𝕜 Fₗ] :
              E →L[𝕜] (E →L[𝕜] Fₗ) →L[𝕜] Fₗ

              The continuous semilinear map obtained by applying a continuous semilinear map at a given vector.

              This is the continuous version of LinearMap.applyₗ.

              Equations
              Instances For
                @[simp]
                theorem ContinuousLinearMap.apply_apply {𝕜 : Type u_1} {E : Type u_4} {Fₗ : Type u_7} [SeminormedAddCommGroup E] [SeminormedAddCommGroup Fₗ] [NontriviallyNormedField 𝕜] [NormedSpace 𝕜 E] [NormedSpace 𝕜 Fₗ] (v : E) (f : E →L[𝕜] Fₗ) :
                ((ContinuousLinearMap.apply 𝕜 Fₗ) v) f = f v
                noncomputable def ContinuousLinearMap.compSL {𝕜 : Type u_1} {𝕜₂ : Type u_2} {𝕜₃ : Type u_3} (E : Type u_4) (F : Type u_6) (G : Type u_8) [SeminormedAddCommGroup E] [SeminormedAddCommGroup F] [SeminormedAddCommGroup G] [NontriviallyNormedField 𝕜] [NontriviallyNormedField 𝕜₂] [NontriviallyNormedField 𝕜₃] [NormedSpace 𝕜 E] [NormedSpace 𝕜₂ F] [NormedSpace 𝕜₃ G] (σ₁₂ : 𝕜 →+* 𝕜₂) (σ₂₃ : 𝕜₂ →+* 𝕜₃) {σ₁₃ : 𝕜 →+* 𝕜₃} [RingHomCompTriple σ₁₂ σ₂₃ σ₁₃] [RingHomIsometric σ₂₃] [RingHomIsometric σ₁₃] [RingHomIsometric σ₁₂] :
                (F →SL[σ₂₃] G) →L[𝕜₃] (E →SL[σ₁₂] F) →SL[σ₂₃] E →SL[σ₁₃] G

                Composition of continuous semilinear maps as a continuous semibilinear map.

                Equations
                Instances For
                  theorem ContinuousLinearMap.norm_compSL_le {𝕜 : Type u_1} {𝕜₂ : Type u_2} {𝕜₃ : Type u_3} (E : Type u_4) (F : Type u_6) (G : Type u_8) [SeminormedAddCommGroup E] [SeminormedAddCommGroup F] [SeminormedAddCommGroup G] [NontriviallyNormedField 𝕜] [NontriviallyNormedField 𝕜₂] [NontriviallyNormedField 𝕜₃] [NormedSpace 𝕜 E] [NormedSpace 𝕜₂ F] [NormedSpace 𝕜₃ G] (σ₁₂ : 𝕜 →+* 𝕜₂) (σ₂₃ : 𝕜₂ →+* 𝕜₃) {σ₁₃ : 𝕜 →+* 𝕜₃} [RingHomCompTriple σ₁₂ σ₂₃ σ₁₃] [RingHomIsometric σ₂₃] [RingHomIsometric σ₁₃] [RingHomIsometric σ₁₂] :
                  ContinuousLinearMap.compSL E F G σ₁₂ σ₂₃ 1
                  @[simp]
                  theorem ContinuousLinearMap.compSL_apply {𝕜 : Type u_1} {𝕜₂ : Type u_2} {𝕜₃ : Type u_3} {E : Type u_4} {F : Type u_6} {G : Type u_8} [SeminormedAddCommGroup E] [SeminormedAddCommGroup F] [SeminormedAddCommGroup G] [NontriviallyNormedField 𝕜] [NontriviallyNormedField 𝕜₂] [NontriviallyNormedField 𝕜₃] [NormedSpace 𝕜 E] [NormedSpace 𝕜₂ F] [NormedSpace 𝕜₃ G] {σ₁₂ : 𝕜 →+* 𝕜₂} {σ₂₃ : 𝕜₂ →+* 𝕜₃} {σ₁₃ : 𝕜 →+* 𝕜₃} [RingHomCompTriple σ₁₂ σ₂₃ σ₁₃] [RingHomIsometric σ₂₃] [RingHomIsometric σ₁₃] [RingHomIsometric σ₁₂] (f : F →SL[σ₂₃] G) (g : E →SL[σ₁₂] F) :
                  ((ContinuousLinearMap.compSL E F G σ₁₂ σ₂₃) f) g = f.comp g
                  theorem Continuous.const_clm_comp {𝕜 : Type u_1} {𝕜₂ : Type u_2} {𝕜₃ : Type u_3} {E : Type u_4} {F : Type u_6} {G : Type u_8} [SeminormedAddCommGroup E] [SeminormedAddCommGroup F] [SeminormedAddCommGroup G] [NontriviallyNormedField 𝕜] [NontriviallyNormedField 𝕜₂] [NontriviallyNormedField 𝕜₃] [NormedSpace 𝕜 E] [NormedSpace 𝕜₂ F] [NormedSpace 𝕜₃ G] {σ₁₂ : 𝕜 →+* 𝕜₂} {σ₂₃ : 𝕜₂ →+* 𝕜₃} {σ₁₃ : 𝕜 →+* 𝕜₃} [RingHomCompTriple σ₁₂ σ₂₃ σ₁₃] [RingHomIsometric σ₂₃] [RingHomIsometric σ₁₃] [RingHomIsometric σ₁₂] {X : Type u_11} [TopologicalSpace X] {f : XE →SL[σ₁₂] F} (hf : Continuous f) (g : F →SL[σ₂₃] G) :
                  Continuous fun (x : X) => g.comp (f x)
                  theorem Continuous.clm_comp_const {𝕜 : Type u_1} {𝕜₂ : Type u_2} {𝕜₃ : Type u_3} {E : Type u_4} {F : Type u_6} {G : Type u_8} [SeminormedAddCommGroup E] [SeminormedAddCommGroup F] [SeminormedAddCommGroup G] [NontriviallyNormedField 𝕜] [NontriviallyNormedField 𝕜₂] [NontriviallyNormedField 𝕜₃] [NormedSpace 𝕜 E] [NormedSpace 𝕜₂ F] [NormedSpace 𝕜₃ G] {σ₁₂ : 𝕜 →+* 𝕜₂} {σ₂₃ : 𝕜₂ →+* 𝕜₃} {σ₁₃ : 𝕜 →+* 𝕜₃} [RingHomCompTriple σ₁₂ σ₂₃ σ₁₃] [RingHomIsometric σ₂₃] [RingHomIsometric σ₁₃] [RingHomIsometric σ₁₂] {X : Type u_11} [TopologicalSpace X] {g : XF →SL[σ₂₃] G} (hg : Continuous g) (f : E →SL[σ₁₂] F) :
                  Continuous fun (x : X) => (g x).comp f
                  noncomputable def ContinuousLinearMap.compL (𝕜 : Type u_1) (E : Type u_4) (Fₗ : Type u_7) (Gₗ : Type u_9) [SeminormedAddCommGroup E] [SeminormedAddCommGroup Fₗ] [SeminormedAddCommGroup Gₗ] [NontriviallyNormedField 𝕜] [NormedSpace 𝕜 E] [NormedSpace 𝕜 Fₗ] [NormedSpace 𝕜 Gₗ] :
                  (Fₗ →L[𝕜] Gₗ) →L[𝕜] (E →L[𝕜] Fₗ) →L[𝕜] E →L[𝕜] Gₗ

                  Composition of continuous linear maps as a continuous bilinear map.

                  Equations
                  Instances For
                    theorem ContinuousLinearMap.norm_compL_le (𝕜 : Type u_1) (E : Type u_4) (Fₗ : Type u_7) (Gₗ : Type u_9) [SeminormedAddCommGroup E] [SeminormedAddCommGroup Fₗ] [SeminormedAddCommGroup Gₗ] [NontriviallyNormedField 𝕜] [NormedSpace 𝕜 E] [NormedSpace 𝕜 Fₗ] [NormedSpace 𝕜 Gₗ] :
                    @[simp]
                    theorem ContinuousLinearMap.compL_apply (𝕜 : Type u_1) (E : Type u_4) (Fₗ : Type u_7) (Gₗ : Type u_9) [SeminormedAddCommGroup E] [SeminormedAddCommGroup Fₗ] [SeminormedAddCommGroup Gₗ] [NontriviallyNormedField 𝕜] [NormedSpace 𝕜 E] [NormedSpace 𝕜 Fₗ] [NormedSpace 𝕜 Gₗ] (f : Fₗ →L[𝕜] Gₗ) (g : E →L[𝕜] Fₗ) :
                    ((ContinuousLinearMap.compL 𝕜 E Fₗ Gₗ) f) g = f.comp g
                    noncomputable def ContinuousLinearMap.precompR {𝕜 : Type u_1} {E : Type u_4} (Eₗ : Type u_5) {Fₗ : Type u_7} {Gₗ : Type u_9} [SeminormedAddCommGroup E] [SeminormedAddCommGroup Eₗ] [SeminormedAddCommGroup Fₗ] [SeminormedAddCommGroup Gₗ] [NontriviallyNormedField 𝕜] [NormedSpace 𝕜 E] [NormedSpace 𝕜 Eₗ] [NormedSpace 𝕜 Fₗ] [NormedSpace 𝕜 Gₗ] (L : E →L[𝕜] Fₗ →L[𝕜] Gₗ) :
                    E →L[𝕜] (Eₗ →L[𝕜] Fₗ) →L[𝕜] Eₗ →L[𝕜] Gₗ

                    Apply L(x,-) pointwise to bilinear maps, as a continuous bilinear map

                    Equations
                    Instances For
                      @[simp]
                      theorem ContinuousLinearMap.precompR_apply {𝕜 : Type u_1} {E : Type u_4} (Eₗ : Type u_5) {Fₗ : Type u_7} {Gₗ : Type u_9} [SeminormedAddCommGroup E] [SeminormedAddCommGroup Eₗ] [SeminormedAddCommGroup Fₗ] [SeminormedAddCommGroup Gₗ] [NontriviallyNormedField 𝕜] [NormedSpace 𝕜 E] [NormedSpace 𝕜 Eₗ] [NormedSpace 𝕜 Fₗ] [NormedSpace 𝕜 Gₗ] (L : E →L[𝕜] Fₗ →L[𝕜] Gₗ) (a✝ : E) :
                      (ContinuousLinearMap.precompR Eₗ L) a✝ = (ContinuousLinearMap.compL 𝕜 Eₗ Fₗ Gₗ) (L a✝)
                      noncomputable def ContinuousLinearMap.precompL {𝕜 : Type u_1} {E : Type u_4} (Eₗ : Type u_5) {Fₗ : Type u_7} {Gₗ : Type u_9} [SeminormedAddCommGroup E] [SeminormedAddCommGroup Eₗ] [SeminormedAddCommGroup Fₗ] [SeminormedAddCommGroup Gₗ] [NontriviallyNormedField 𝕜] [NormedSpace 𝕜 E] [NormedSpace 𝕜 Eₗ] [NormedSpace 𝕜 Fₗ] [NormedSpace 𝕜 Gₗ] (L : E →L[𝕜] Fₗ →L[𝕜] Gₗ) :
                      (Eₗ →L[𝕜] E) →L[𝕜] Fₗ →L[𝕜] Eₗ →L[𝕜] Gₗ

                      Apply L(-,y) pointwise to bilinear maps, as a continuous bilinear map

                      Equations
                      Instances For
                        @[simp]
                        theorem ContinuousLinearMap.precompL_apply {𝕜 : Type u_1} {E : Type u_4} (Eₗ : Type u_5) {Fₗ : Type u_7} {Gₗ : Type u_9} [SeminormedAddCommGroup E] [SeminormedAddCommGroup Eₗ] [SeminormedAddCommGroup Fₗ] [SeminormedAddCommGroup Gₗ] [NontriviallyNormedField 𝕜] [NormedSpace 𝕜 E] [NormedSpace 𝕜 Eₗ] [NormedSpace 𝕜 Fₗ] [NormedSpace 𝕜 Gₗ] (L : E →L[𝕜] Fₗ →L[𝕜] Gₗ) (u : Eₗ →L[𝕜] E) (f : Fₗ) (g : Eₗ) :
                        (((ContinuousLinearMap.precompL Eₗ L) u) f) g = (L (u g)) f
                        theorem ContinuousLinearMap.norm_precompR_le {𝕜 : Type u_1} {E : Type u_4} (Eₗ : Type u_5) {Fₗ : Type u_7} {Gₗ : Type u_9} [SeminormedAddCommGroup E] [SeminormedAddCommGroup Eₗ] [SeminormedAddCommGroup Fₗ] [SeminormedAddCommGroup Gₗ] [NontriviallyNormedField 𝕜] [NormedSpace 𝕜 E] [NormedSpace 𝕜 Eₗ] [NormedSpace 𝕜 Fₗ] [NormedSpace 𝕜 Gₗ] (L : E →L[𝕜] Fₗ →L[𝕜] Gₗ) :
                        theorem ContinuousLinearMap.norm_precompL_le {𝕜 : Type u_1} {E : Type u_4} (Eₗ : Type u_5) {Fₗ : Type u_7} {Gₗ : Type u_9} [SeminormedAddCommGroup E] [SeminormedAddCommGroup Eₗ] [SeminormedAddCommGroup Fₗ] [SeminormedAddCommGroup Gₗ] [NontriviallyNormedField 𝕜] [NormedSpace 𝕜 E] [NormedSpace 𝕜 Eₗ] [NormedSpace 𝕜 Fₗ] [NormedSpace 𝕜 Gₗ] (L : E →L[𝕜] Fₗ →L[𝕜] Gₗ) :
                        noncomputable def ContinuousLinearMap.bilinearComp {𝕜 : Type u_1} {𝕜₂ : Type u_2} {𝕜₃ : Type u_3} {E : Type u_4} {F : Type u_6} {G : Type u_8} [SeminormedAddCommGroup E] [SeminormedAddCommGroup F] [SeminormedAddCommGroup G] [NontriviallyNormedField 𝕜] [NontriviallyNormedField 𝕜₂] [NontriviallyNormedField 𝕜₃] [NormedSpace 𝕜 E] [NormedSpace 𝕜₂ F] [NormedSpace 𝕜₃ G] {σ₂₃ : 𝕜₂ →+* 𝕜₃} {σ₁₃ : 𝕜 →+* 𝕜₃} {E' : Type u_11} {F' : Type u_12} [SeminormedAddCommGroup E'] [SeminormedAddCommGroup F'] {𝕜₁' : Type u_13} {𝕜₂' : Type u_14} [NontriviallyNormedField 𝕜₁'] [NontriviallyNormedField 𝕜₂'] [NormedSpace 𝕜₁' E'] [NormedSpace 𝕜₂' F'] {σ₁' : 𝕜₁' →+* 𝕜} {σ₁₃' : 𝕜₁' →+* 𝕜₃} {σ₂' : 𝕜₂' →+* 𝕜₂} {σ₂₃' : 𝕜₂' →+* 𝕜₃} [RingHomCompTriple σ₁' σ₁₃ σ₁₃'] [RingHomCompTriple σ₂' σ₂₃ σ₂₃'] [RingHomIsometric σ₂₃] [RingHomIsometric σ₁₃'] [RingHomIsometric σ₂₃'] (f : E →SL[σ₁₃] F →SL[σ₂₃] G) (gE : E' →SL[σ₁'] E) (gF : F' →SL[σ₂'] F) :
                        E' →SL[σ₁₃'] F' →SL[σ₂₃'] G

                        Compose a bilinear map E →SL[σ₁₃] F →SL[σ₂₃] G with two linear maps E' →SL[σ₁'] E and F' →SL[σ₂'] F.

                        Equations
                        • f.bilinearComp gE gF = ((f.comp gE).flip.comp gF).flip
                        Instances For
                          @[simp]
                          theorem ContinuousLinearMap.bilinearComp_apply {𝕜 : Type u_1} {𝕜₂ : Type u_2} {𝕜₃ : Type u_3} {E : Type u_4} {F : Type u_6} {G : Type u_8} [SeminormedAddCommGroup E] [SeminormedAddCommGroup F] [SeminormedAddCommGroup G] [NontriviallyNormedField 𝕜] [NontriviallyNormedField 𝕜₂] [NontriviallyNormedField 𝕜₃] [NormedSpace 𝕜 E] [NormedSpace 𝕜₂ F] [NormedSpace 𝕜₃ G] {σ₂₃ : 𝕜₂ →+* 𝕜₃} {σ₁₃ : 𝕜 →+* 𝕜₃} {E' : Type u_11} {F' : Type u_12} [SeminormedAddCommGroup E'] [SeminormedAddCommGroup F'] {𝕜₁' : Type u_13} {𝕜₂' : Type u_14} [NontriviallyNormedField 𝕜₁'] [NontriviallyNormedField 𝕜₂'] [NormedSpace 𝕜₁' E'] [NormedSpace 𝕜₂' F'] {σ₁' : 𝕜₁' →+* 𝕜} {σ₁₃' : 𝕜₁' →+* 𝕜₃} {σ₂' : 𝕜₂' →+* 𝕜₂} {σ₂₃' : 𝕜₂' →+* 𝕜₃} [RingHomCompTriple σ₁' σ₁₃ σ₁₃'] [RingHomCompTriple σ₂' σ₂₃ σ₂₃'] [RingHomIsometric σ₂₃] [RingHomIsometric σ₁₃'] [RingHomIsometric σ₂₃'] (f : E →SL[σ₁₃] F →SL[σ₂₃] G) (gE : E' →SL[σ₁'] E) (gF : F' →SL[σ₂'] F) (x : E') (y : F') :
                          ((f.bilinearComp gE gF) x) y = (f (gE x)) (gF y)
                          noncomputable def ContinuousLinearMap.deriv₂ {𝕜 : Type u_1} {E : Type u_4} {Fₗ : Type u_7} {Gₗ : Type u_9} [SeminormedAddCommGroup E] [SeminormedAddCommGroup Fₗ] [SeminormedAddCommGroup Gₗ] [NontriviallyNormedField 𝕜] [NormedSpace 𝕜 E] [NormedSpace 𝕜 Fₗ] [NormedSpace 𝕜 Gₗ] (f : E →L[𝕜] Fₗ →L[𝕜] Gₗ) :
                          E × Fₗ →L[𝕜] E × Fₗ →L[𝕜] Gₗ

                          Derivative of a continuous bilinear map f : E →L[𝕜] F →L[𝕜] G interpreted as a map E × F → G at point p : E × F evaluated at q : E × F, as a continuous bilinear map.

                          Equations
                          Instances For
                            @[simp]
                            theorem ContinuousLinearMap.coe_deriv₂ {𝕜 : Type u_1} {E : Type u_4} {Fₗ : Type u_7} {Gₗ : Type u_9} [SeminormedAddCommGroup E] [SeminormedAddCommGroup Fₗ] [SeminormedAddCommGroup Gₗ] [NontriviallyNormedField 𝕜] [NormedSpace 𝕜 E] [NormedSpace 𝕜 Fₗ] [NormedSpace 𝕜 Gₗ] (f : E →L[𝕜] Fₗ →L[𝕜] Gₗ) (p : E × Fₗ) :
                            (f.deriv₂ p) = fun (q : E × Fₗ) => (f p.1) q.2 + (f q.1) p.2
                            theorem ContinuousLinearMap.map_add_add {𝕜 : Type u_1} {E : Type u_4} {Fₗ : Type u_7} {Gₗ : Type u_9} [SeminormedAddCommGroup E] [SeminormedAddCommGroup Fₗ] [SeminormedAddCommGroup Gₗ] [NontriviallyNormedField 𝕜] [NormedSpace 𝕜 E] [NormedSpace 𝕜 Fₗ] [NormedSpace 𝕜 Gₗ] (f : E →L[𝕜] Fₗ →L[𝕜] Gₗ) (x x' : E) (y y' : Fₗ) :
                            (f (x + x')) (y + y') = (f x) y + (f.deriv₂ (x, y)) (x', y') + (f x') y'
                            @[simp]
                            theorem ContinuousLinearMap.norm_smulRight_apply {𝕜 : Type u_1} {E : Type u_4} {Fₗ : Type u_7} [SeminormedAddCommGroup E] [SeminormedAddCommGroup Fₗ] [NontriviallyNormedField 𝕜] [NormedSpace 𝕜 E] [NormedSpace 𝕜 Fₗ] (c : E →L[𝕜] 𝕜) (f : Fₗ) :
                            c.smulRight f = c * f

                            The norm of the tensor product of a scalar linear map and of an element of a normed space is the product of the norms.

                            @[simp]
                            theorem ContinuousLinearMap.nnnorm_smulRight_apply {𝕜 : Type u_1} {E : Type u_4} {Fₗ : Type u_7} [SeminormedAddCommGroup E] [SeminormedAddCommGroup Fₗ] [NontriviallyNormedField 𝕜] [NormedSpace 𝕜 E] [NormedSpace 𝕜 Fₗ] (c : E →L[𝕜] 𝕜) (f : Fₗ) :

                            The non-negative norm of the tensor product of a scalar linear map and of an element of a normed space is the product of the non-negative norms.

                            noncomputable def ContinuousLinearMap.smulRightL (𝕜 : Type u_1) (E : Type u_4) (Fₗ : Type u_7) [SeminormedAddCommGroup E] [SeminormedAddCommGroup Fₗ] [NontriviallyNormedField 𝕜] [NormedSpace 𝕜 E] [NormedSpace 𝕜 Fₗ] :
                            (E →L[𝕜] 𝕜) →L[𝕜] Fₗ →L[𝕜] E →L[𝕜] Fₗ

                            ContinuousLinearMap.smulRight as a continuous trilinear map: smulRightL (c : E →L[𝕜] 𝕜) (f : F) (x : E) = c x • f.

                            Equations
                            Instances For
                              @[simp]
                              theorem ContinuousLinearMap.norm_smulRightL_apply {𝕜 : Type u_1} {E : Type u_4} {Fₗ : Type u_7} [SeminormedAddCommGroup E] [SeminormedAddCommGroup Fₗ] [NontriviallyNormedField 𝕜] [NormedSpace 𝕜 E] [NormedSpace 𝕜 Fₗ] (c : E →L[𝕜] 𝕜) (f : Fₗ) :
                              noncomputable def ContinuousLinearMap.bilinearRestrictScalars (𝕜 : Type u_1) {E : Type u_4} {F : Type u_6} {G : Type u_8} {𝕜' : Type u_11} [NontriviallyNormedField 𝕜] [NontriviallyNormedField 𝕜'] [NormedAlgebra 𝕜 𝕜'] [SeminormedAddCommGroup E] [NormedSpace 𝕜 E] [NormedSpace 𝕜' E] [IsScalarTower 𝕜 𝕜' E] [SeminormedAddCommGroup F] [NormedSpace 𝕜 F] [NormedSpace 𝕜' F] [IsScalarTower 𝕜 𝕜' F] [SeminormedAddCommGroup G] [NormedSpace 𝕜 G] [NormedSpace 𝕜' G] [IsScalarTower 𝕜 𝕜' G] (B : E →L[𝕜'] F →L[𝕜'] G) :
                              E →L[𝕜] F →L[𝕜] G

                              Convenience function for restricting the linearity of a bilinear map.

                              Equations
                              Instances For
                                @[simp]
                                theorem ContinuousLinearMap.bilinearRestrictScalars_apply_apply (𝕜 : Type u_1) {E : Type u_4} {F : Type u_6} {G : Type u_8} {𝕜' : Type u_11} [NontriviallyNormedField 𝕜] [NontriviallyNormedField 𝕜'] [NormedAlgebra 𝕜 𝕜'] [SeminormedAddCommGroup E] [NormedSpace 𝕜 E] [NormedSpace 𝕜' E] [IsScalarTower 𝕜 𝕜' E] [SeminormedAddCommGroup F] [NormedSpace 𝕜 F] [NormedSpace 𝕜' F] [IsScalarTower 𝕜 𝕜' F] [SeminormedAddCommGroup G] [NormedSpace 𝕜 G] [NormedSpace 𝕜' G] [IsScalarTower 𝕜 𝕜' G] (B : E →L[𝕜'] F →L[𝕜'] G) (x : E) (y : F) :
                                @[simp]
                                theorem ContinuousLinearMap.norm_bilinearRestrictScalars {𝕜 : Type u_1} {E : Type u_4} {F : Type u_6} {G : Type u_8} {𝕜' : Type u_11} [NontriviallyNormedField 𝕜] [NontriviallyNormedField 𝕜'] [NormedAlgebra 𝕜 𝕜'] [SeminormedAddCommGroup E] [NormedSpace 𝕜 E] [NormedSpace 𝕜' E] [IsScalarTower 𝕜 𝕜' E] [SeminormedAddCommGroup F] [NormedSpace 𝕜 F] [NormedSpace 𝕜' F] [IsScalarTower 𝕜 𝕜' F] [SeminormedAddCommGroup G] [NormedSpace 𝕜 G] [NormedSpace 𝕜' G] [IsScalarTower 𝕜 𝕜' G] (B : E →L[𝕜'] F →L[𝕜'] G) :