theorem
ContinuousLinearMap.nnnorm_def
{𝕜 : Type u_1}
{𝕜₂ : Type u_2}
{E : Type u_4}
{F : Type u_6}
[SeminormedAddCommGroup E]
[SeminormedAddCommGroup F]
[NontriviallyNormedField 𝕜]
[NontriviallyNormedField 𝕜₂]
[NormedSpace 𝕜 E]
[NormedSpace 𝕜₂ F]
{σ₁₂ : 𝕜 →+* 𝕜₂}
[RingHomIsometric σ₁₂]
(f : E →SL[σ₁₂] F)
:
theorem
ContinuousLinearMap.opNNNorm_le_bound
{𝕜 : Type u_1}
{𝕜₂ : Type u_2}
{E : Type u_4}
{F : Type u_6}
[SeminormedAddCommGroup E]
[SeminormedAddCommGroup F]
[NontriviallyNormedField 𝕜]
[NontriviallyNormedField 𝕜₂]
[NormedSpace 𝕜 E]
[NormedSpace 𝕜₂ F]
{σ₁₂ : 𝕜 →+* 𝕜₂}
[RingHomIsometric σ₁₂]
(f : E →SL[σ₁₂] F)
(M : NNReal)
(hM : ∀ (x : E), ‖f x‖₊ ≤ M * ‖x‖₊)
:
If one controls the norm of every A x
, then one controls the norm of A
.
theorem
ContinuousLinearMap.opNNNorm_le_bound'
{𝕜 : Type u_1}
{𝕜₂ : Type u_2}
{E : Type u_4}
{F : Type u_6}
[SeminormedAddCommGroup E]
[SeminormedAddCommGroup F]
[NontriviallyNormedField 𝕜]
[NontriviallyNormedField 𝕜₂]
[NormedSpace 𝕜 E]
[NormedSpace 𝕜₂ F]
{σ₁₂ : 𝕜 →+* 𝕜₂}
[RingHomIsometric σ₁₂]
(f : E →SL[σ₁₂] F)
(M : NNReal)
(hM : ∀ (x : E), ‖x‖₊ ≠ 0 → ‖f x‖₊ ≤ M * ‖x‖₊)
:
If one controls the norm of every A x
, ‖x‖₊ ≠ 0
, then one controls the norm of A
.
theorem
ContinuousLinearMap.opNNNorm_le_of_unit_nnnorm
{E : Type u_4}
{F : Type u_6}
[SeminormedAddCommGroup E]
[SeminormedAddCommGroup F]
[NormedSpace ℝ E]
[NormedSpace ℝ F]
{f : E →L[ℝ] F}
{C : NNReal}
(hf : ∀ (x : E), ‖x‖₊ = 1 → ‖f x‖₊ ≤ C)
:
For a continuous real linear map f
, if one controls the norm of every f x
, ‖x‖₊ = 1
, then
one controls the norm of f
.
theorem
ContinuousLinearMap.opNNNorm_le_of_lipschitz
{𝕜 : Type u_1}
{𝕜₂ : Type u_2}
{E : Type u_4}
{F : Type u_6}
[SeminormedAddCommGroup E]
[SeminormedAddCommGroup F]
[NontriviallyNormedField 𝕜]
[NontriviallyNormedField 𝕜₂]
[NormedSpace 𝕜 E]
[NormedSpace 𝕜₂ F]
{σ₁₂ : 𝕜 →+* 𝕜₂}
[RingHomIsometric σ₁₂]
{f : E →SL[σ₁₂] F}
{K : NNReal}
(hf : LipschitzWith K ⇑f)
:
theorem
ContinuousLinearMap.opNNNorm_eq_of_bounds
{𝕜 : Type u_1}
{𝕜₂ : Type u_2}
{E : Type u_4}
{F : Type u_6}
[SeminormedAddCommGroup E]
[SeminormedAddCommGroup F]
[NontriviallyNormedField 𝕜]
[NontriviallyNormedField 𝕜₂]
[NormedSpace 𝕜 E]
[NormedSpace 𝕜₂ F]
{σ₁₂ : 𝕜 →+* 𝕜₂}
[RingHomIsometric σ₁₂]
{φ : E →SL[σ₁₂] F}
(M : NNReal)
(h_above : ∀ (x : E), ‖φ x‖₊ ≤ M * ‖x‖₊)
(h_below : ∀ (N : NNReal), (∀ (x : E), ‖φ x‖₊ ≤ N * ‖x‖₊) → M ≤ N)
:
theorem
ContinuousLinearMap.opNNNorm_le_iff
{𝕜 : Type u_1}
{𝕜₂ : Type u_2}
{E : Type u_4}
{F : Type u_6}
[SeminormedAddCommGroup E]
[SeminormedAddCommGroup F]
[NontriviallyNormedField 𝕜]
[NontriviallyNormedField 𝕜₂]
[NormedSpace 𝕜 E]
[NormedSpace 𝕜₂ F]
{σ₁₂ : 𝕜 →+* 𝕜₂}
[RingHomIsometric σ₁₂]
{f : E →SL[σ₁₂] F}
{C : NNReal}
:
theorem
ContinuousLinearMap.isLeast_opNNNorm
{𝕜 : Type u_1}
{𝕜₂ : Type u_2}
{E : Type u_4}
{F : Type u_6}
[SeminormedAddCommGroup E]
[SeminormedAddCommGroup F]
[NontriviallyNormedField 𝕜]
[NontriviallyNormedField 𝕜₂]
[NormedSpace 𝕜 E]
[NormedSpace 𝕜₂ F]
{σ₁₂ : 𝕜 →+* 𝕜₂}
[RingHomIsometric σ₁₂]
(f : E →SL[σ₁₂] F)
:
theorem
ContinuousLinearMap.opNNNorm_comp_le
{𝕜 : Type u_1}
{𝕜₂ : Type u_2}
{𝕜₃ : Type u_3}
{E : Type u_4}
{F : Type u_6}
{G : Type u_8}
[SeminormedAddCommGroup E]
[SeminormedAddCommGroup F]
[SeminormedAddCommGroup G]
[NontriviallyNormedField 𝕜]
[NontriviallyNormedField 𝕜₂]
[NontriviallyNormedField 𝕜₃]
[NormedSpace 𝕜 E]
[NormedSpace 𝕜₂ F]
[NormedSpace 𝕜₃ G]
{σ₁₂ : 𝕜 →+* 𝕜₂}
{σ₂₃ : 𝕜₂ →+* 𝕜₃}
{σ₁₃ : 𝕜 →+* 𝕜₃}
[RingHomCompTriple σ₁₂ σ₂₃ σ₁₃]
[RingHomIsometric σ₁₂]
[RingHomIsometric σ₂₃]
(h : F →SL[σ₂₃] G)
[RingHomIsometric σ₁₃]
(f : E →SL[σ₁₂] F)
:
theorem
ContinuousLinearMap.le_opNNNorm
{𝕜 : Type u_1}
{𝕜₂ : Type u_2}
{E : Type u_4}
{F : Type u_6}
[SeminormedAddCommGroup E]
[SeminormedAddCommGroup F]
[NontriviallyNormedField 𝕜]
[NontriviallyNormedField 𝕜₂]
[NormedSpace 𝕜 E]
[NormedSpace 𝕜₂ F]
{σ₁₂ : 𝕜 →+* 𝕜₂}
[RingHomIsometric σ₁₂]
(f : E →SL[σ₁₂] F)
(x : E)
:
theorem
ContinuousLinearMap.nndist_le_opNNNorm
{𝕜 : Type u_1}
{𝕜₂ : Type u_2}
{E : Type u_4}
{F : Type u_6}
[SeminormedAddCommGroup E]
[SeminormedAddCommGroup F]
[NontriviallyNormedField 𝕜]
[NontriviallyNormedField 𝕜₂]
[NormedSpace 𝕜 E]
[NormedSpace 𝕜₂ F]
{σ₁₂ : 𝕜 →+* 𝕜₂}
[RingHomIsometric σ₁₂]
(f : E →SL[σ₁₂] F)
(x y : E)
:
theorem
ContinuousLinearMap.lipschitz
{𝕜 : Type u_1}
{𝕜₂ : Type u_2}
{E : Type u_4}
{F : Type u_6}
[SeminormedAddCommGroup E]
[SeminormedAddCommGroup F]
[NontriviallyNormedField 𝕜]
[NontriviallyNormedField 𝕜₂]
[NormedSpace 𝕜 E]
[NormedSpace 𝕜₂ F]
{σ₁₂ : 𝕜 →+* 𝕜₂}
[RingHomIsometric σ₁₂]
(f : E →SL[σ₁₂] F)
:
LipschitzWith ‖f‖₊ ⇑f
continuous linear maps are Lipschitz continuous.
theorem
ContinuousLinearMap.lipschitz_apply
{𝕜 : Type u_1}
{𝕜₂ : Type u_2}
{E : Type u_4}
{F : Type u_6}
[SeminormedAddCommGroup E]
[SeminormedAddCommGroup F]
[NontriviallyNormedField 𝕜]
[NontriviallyNormedField 𝕜₂]
[NormedSpace 𝕜 E]
[NormedSpace 𝕜₂ F]
{σ₁₂ : 𝕜 →+* 𝕜₂}
[RingHomIsometric σ₁₂]
(x : E)
:
LipschitzWith ‖x‖₊ fun (f : E →SL[σ₁₂] F) => f x
Evaluation of a continuous linear map f
at a point is Lipschitz continuous in f
.
theorem
ContinuousLinearMap.exists_mul_lt_apply_of_lt_opNNNorm
{𝕜 : Type u_1}
{𝕜₂ : Type u_2}
{E : Type u_4}
{F : Type u_6}
[SeminormedAddCommGroup E]
[SeminormedAddCommGroup F]
[NontriviallyNormedField 𝕜]
[NontriviallyNormedField 𝕜₂]
[NormedSpace 𝕜 E]
[NormedSpace 𝕜₂ F]
{σ₁₂ : 𝕜 →+* 𝕜₂}
[RingHomIsometric σ₁₂]
(f : E →SL[σ₁₂] F)
{r : NNReal}
(hr : r < ‖f‖₊)
:
theorem
ContinuousLinearMap.exists_mul_lt_of_lt_opNorm
{𝕜 : Type u_1}
{𝕜₂ : Type u_2}
{E : Type u_4}
{F : Type u_6}
[SeminormedAddCommGroup E]
[SeminormedAddCommGroup F]
[NontriviallyNormedField 𝕜]
[NontriviallyNormedField 𝕜₂]
[NormedSpace 𝕜 E]
[NormedSpace 𝕜₂ F]
{σ₁₂ : 𝕜 →+* 𝕜₂}
[RingHomIsometric σ₁₂]
(f : E →SL[σ₁₂] F)
{r : ℝ}
(hr₀ : 0 ≤ r)
(hr : r < ‖f‖)
:
theorem
ContinuousLinearMap.exists_lt_apply_of_lt_opNNNorm
{𝕜 : Type u_11}
{𝕜₂ : Type u_12}
{E : Type u_13}
{F : Type u_14}
[NormedAddCommGroup E]
[SeminormedAddCommGroup F]
[DenselyNormedField 𝕜]
[NontriviallyNormedField 𝕜₂]
{σ₁₂ : 𝕜 →+* 𝕜₂}
[NormedSpace 𝕜 E]
[NormedSpace 𝕜₂ F]
[RingHomIsometric σ₁₂]
(f : E →SL[σ₁₂] F)
{r : NNReal}
(hr : r < ‖f‖₊)
:
theorem
ContinuousLinearMap.exists_lt_apply_of_lt_opNorm
{𝕜 : Type u_11}
{𝕜₂ : Type u_12}
{E : Type u_13}
{F : Type u_14}
[NormedAddCommGroup E]
[SeminormedAddCommGroup F]
[DenselyNormedField 𝕜]
[NontriviallyNormedField 𝕜₂]
{σ₁₂ : 𝕜 →+* 𝕜₂}
[NormedSpace 𝕜 E]
[NormedSpace 𝕜₂ F]
[RingHomIsometric σ₁₂]
(f : E →SL[σ₁₂] F)
{r : ℝ}
(hr : r < ‖f‖)
:
theorem
ContinuousLinearMap.sSup_unit_ball_eq_nnnorm
{𝕜 : Type u_11}
{𝕜₂ : Type u_12}
{E : Type u_13}
{F : Type u_14}
[NormedAddCommGroup E]
[SeminormedAddCommGroup F]
[DenselyNormedField 𝕜]
[NontriviallyNormedField 𝕜₂]
{σ₁₂ : 𝕜 →+* 𝕜₂}
[NormedSpace 𝕜 E]
[NormedSpace 𝕜₂ F]
[RingHomIsometric σ₁₂]
(f : E →SL[σ₁₂] F)
:
theorem
ContinuousLinearMap.sSup_unit_ball_eq_norm
{𝕜 : Type u_11}
{𝕜₂ : Type u_12}
{E : Type u_13}
{F : Type u_14}
[NormedAddCommGroup E]
[SeminormedAddCommGroup F]
[DenselyNormedField 𝕜]
[NontriviallyNormedField 𝕜₂]
{σ₁₂ : 𝕜 →+* 𝕜₂}
[NormedSpace 𝕜 E]
[NormedSpace 𝕜₂ F]
[RingHomIsometric σ₁₂]
(f : E →SL[σ₁₂] F)
:
theorem
ContinuousLinearMap.sSup_unitClosedBall_eq_nnnorm
{𝕜 : Type u_11}
{𝕜₂ : Type u_12}
{E : Type u_13}
{F : Type u_14}
[NormedAddCommGroup E]
[SeminormedAddCommGroup F]
[DenselyNormedField 𝕜]
[NontriviallyNormedField 𝕜₂]
{σ₁₂ : 𝕜 →+* 𝕜₂}
[NormedSpace 𝕜 E]
[NormedSpace 𝕜₂ F]
[RingHomIsometric σ₁₂]
(f : E →SL[σ₁₂] F)
:
@[deprecated ContinuousLinearMap.sSup_unitClosedBall_eq_nnnorm (since := "2024-12-01")]
theorem
ContinuousLinearMap.sSup_closed_unit_ball_eq_nnnorm
{𝕜 : Type u_11}
{𝕜₂ : Type u_12}
{E : Type u_13}
{F : Type u_14}
[NormedAddCommGroup E]
[SeminormedAddCommGroup F]
[DenselyNormedField 𝕜]
[NontriviallyNormedField 𝕜₂]
{σ₁₂ : 𝕜 →+* 𝕜₂}
[NormedSpace 𝕜 E]
[NormedSpace 𝕜₂ F]
[RingHomIsometric σ₁₂]
(f : E →SL[σ₁₂] F)
:
theorem
ContinuousLinearMap.sSup_unitClosedBall_eq_norm
{𝕜 : Type u_11}
{𝕜₂ : Type u_12}
{E : Type u_13}
{F : Type u_14}
[NormedAddCommGroup E]
[SeminormedAddCommGroup F]
[DenselyNormedField 𝕜]
[NontriviallyNormedField 𝕜₂]
{σ₁₂ : 𝕜 →+* 𝕜₂}
[NormedSpace 𝕜 E]
[NormedSpace 𝕜₂ F]
[RingHomIsometric σ₁₂]
(f : E →SL[σ₁₂] F)
:
@[deprecated ContinuousLinearMap.sSup_unitClosedBall_eq_norm (since := "2024-12-01")]
theorem
ContinuousLinearMap.sSup_closed_unit_ball_eq_norm
{𝕜 : Type u_11}
{𝕜₂ : Type u_12}
{E : Type u_13}
{F : Type u_14}
[NormedAddCommGroup E]
[SeminormedAddCommGroup F]
[DenselyNormedField 𝕜]
[NontriviallyNormedField 𝕜₂]
{σ₁₂ : 𝕜 →+* 𝕜₂}
[NormedSpace 𝕜 E]
[NormedSpace 𝕜₂ F]
[RingHomIsometric σ₁₂]
(f : E →SL[σ₁₂] F)
:
theorem
ContinuousLinearEquiv.lipschitz
{𝕜 : Type u_1}
{𝕜₂ : Type u_2}
{E : Type u_4}
{F : Type u_6}
[SeminormedAddCommGroup E]
[SeminormedAddCommGroup F]
[NontriviallyNormedField 𝕜]
[NontriviallyNormedField 𝕜₂]
[NormedSpace 𝕜 E]
[NormedSpace 𝕜₂ F]
{σ₁₂ : 𝕜 →+* 𝕜₂}
{σ₂₁ : 𝕜₂ →+* 𝕜}
[RingHomInvPair σ₁₂ σ₂₁]
[RingHomInvPair σ₂₁ σ₁₂]
[RingHomIsometric σ₁₂]
(e : E ≃SL[σ₁₂] F)
:
LipschitzWith ‖↑e‖₊ ⇑e