Documentation

Mathlib.Data.DFinsupp.Sigma

DFinsupp on Sigma types #

Main definitions #

def DFinsupp.sigmaCurry {ι : Type u} {α : ιType u_2} {δ : (i : ι) → α iType v} [DecidableEq ι] [(i : ι) → (j : α i) → Zero (δ i j)] (f : Π₀ (i : (x : ι) × α x), δ i.fst i.snd) :
Π₀ (i : ι) (j : α i), δ i j

The natural map between Π₀ (i : Σ i, α i), δ i.1 i.2 and Π₀ i (j : α i), δ i j.

Equations
  • One or more equations did not get rendered due to their size.
Instances For
    @[simp]
    theorem DFinsupp.sigmaCurry_apply {ι : Type u} {α : ιType u_2} {δ : (i : ι) → α iType v} [DecidableEq ι] [(i : ι) → (j : α i) → Zero (δ i j)] (f : Π₀ (i : (x : ι) × α x), δ i.fst i.snd) (i : ι) (j : α i) :
    (f.sigmaCurry i) j = f i, j
    @[simp]
    theorem DFinsupp.sigmaCurry_zero {ι : Type u} {α : ιType u_2} {δ : (i : ι) → α iType v} [DecidableEq ι] [(i : ι) → (j : α i) → Zero (δ i j)] :
    @[simp]
    theorem DFinsupp.sigmaCurry_add {ι : Type u} {α : ιType u_2} {δ : (i : ι) → α iType v} [DecidableEq ι] [(i : ι) → (j : α i) → AddZeroClass (δ i j)] (f g : Π₀ (i : (x : ι) × α x), δ i.fst i.snd) :
    (f + g).sigmaCurry = f.sigmaCurry + g.sigmaCurry
    @[simp]
    theorem DFinsupp.sigmaCurry_smul {ι : Type u} {γ : Type w} {α : ιType u_2} {δ : (i : ι) → α iType v} [DecidableEq ι] [Monoid γ] [(i : ι) → (j : α i) → AddMonoid (δ i j)] [(i : ι) → (j : α i) → DistribMulAction γ (δ i j)] (r : γ) (f : Π₀ (i : (x : ι) × α x), δ i.fst i.snd) :
    (r f).sigmaCurry = r f.sigmaCurry
    @[simp]
    theorem DFinsupp.sigmaCurry_single {ι : Type u} {α : ιType u_2} {δ : (i : ι) → α iType v} [DecidableEq ι] [(i : ι) → DecidableEq (α i)] [(i : ι) → (j : α i) → Zero (δ i j)] (ij : (i : ι) × α i) (x : δ ij.fst ij.snd) :
    (DFinsupp.single ij x).sigmaCurry = DFinsupp.single ij.fst (DFinsupp.single ij.snd x)
    def DFinsupp.sigmaUncurry {ι : Type u} {α : ιType u_2} {δ : (i : ι) → α iType v} [(i : ι) → (j : α i) → Zero (δ i j)] [DecidableEq ι] (f : Π₀ (i : ι) (j : α i), δ i j) :
    Π₀ (i : (x : ι) × α x), δ i.fst i.snd

    The natural map between Π₀ i (j : α i), δ i j and Π₀ (i : Σ i, α i), δ i.1 i.2, inverse of curry.

    Equations
    • One or more equations did not get rendered due to their size.
    Instances For
      @[simp]
      theorem DFinsupp.sigmaUncurry_apply {ι : Type u} {α : ιType u_2} {δ : (i : ι) → α iType v} [DecidableEq ι] [(i : ι) → (j : α i) → Zero (δ i j)] (f : Π₀ (i : ι) (j : α i), δ i j) (i : ι) (j : α i) :
      f.sigmaUncurry i, j = (f i) j
      @[simp]
      theorem DFinsupp.sigmaUncurry_zero {ι : Type u} {α : ιType u_2} {δ : (i : ι) → α iType v} [DecidableEq ι] [(i : ι) → (j : α i) → Zero (δ i j)] :
      @[simp]
      theorem DFinsupp.sigmaUncurry_add {ι : Type u} {α : ιType u_2} {δ : (i : ι) → α iType v} [DecidableEq ι] [(i : ι) → (j : α i) → AddZeroClass (δ i j)] (f g : Π₀ (i : ι) (j : α i), δ i j) :
      (f + g).sigmaUncurry = f.sigmaUncurry + g.sigmaUncurry
      @[simp]
      theorem DFinsupp.sigmaUncurry_smul {ι : Type u} {γ : Type w} {α : ιType u_2} {δ : (i : ι) → α iType v} [DecidableEq ι] [Monoid γ] [(i : ι) → (j : α i) → AddMonoid (δ i j)] [(i : ι) → (j : α i) → DistribMulAction γ (δ i j)] (r : γ) (f : Π₀ (i : ι) (j : α i), δ i j) :
      (r f).sigmaUncurry = r f.sigmaUncurry
      @[simp]
      theorem DFinsupp.sigmaUncurry_single {ι : Type u} {α : ιType u_2} {δ : (i : ι) → α iType v} [DecidableEq ι] [(i : ι) → (j : α i) → Zero (δ i j)] [(i : ι) → DecidableEq (α i)] (i : ι) (j : α i) (x : δ i j) :
      (DFinsupp.single i (DFinsupp.single j x)).sigmaUncurry = DFinsupp.single i, j x
      def DFinsupp.sigmaCurryEquiv {ι : Type u} {α : ιType u_2} {δ : (i : ι) → α iType v} [(i : ι) → (j : α i) → Zero (δ i j)] [DecidableEq ι] :
      (Π₀ (i : (x : ι) × α x), δ i.fst i.snd) Π₀ (i : ι) (j : α i), δ i j

      The natural bijection between Π₀ (i : Σ i, α i), δ i.1 i.2 and Π₀ i (j : α i), δ i j.

      This is the dfinsupp version of Equiv.piCurry.

      Equations
      Instances For