Documentation

Mathlib.Data.Nat.Cast.Basic

Cast of natural numbers (additional theorems) #

This file proves additional properties about the canonical homomorphism from the natural numbers into an additive monoid with a one (Nat.cast).

Main declarations #

Nat.cast : ℕ → α as an AddMonoidHom.

Equations
Instances For
    theorem Even.natCast {α : Type u_1} [AddMonoidWithOne α] {n : } (hn : Even n) :
    Even n
    @[simp]
    theorem Nat.cast_mul {α : Type u_1} [NonAssocSemiring α] (m n : ) :
    (m * n) = m * n

    Nat.cast : ℕ → α as a RingHom

    Equations
    Instances For
      @[simp]
      theorem nsmul_eq_mul' {α : Type u_1} [NonAssocSemiring α] (a : α) (n : ) :
      n a = a * n
      @[simp]
      theorem nsmul_eq_mul {α : Type u_1} [NonAssocSemiring α] (n : ) (a : α) :
      n a = n * a
      @[simp]
      theorem Nat.cast_pow {α : Type u_1} [Semiring α] (m n : ) :
      (m ^ n) = m ^ n
      theorem Nat.cast_dvd_cast {α : Type u_1} [Semiring α] {m n : } (h : m n) :
      m n
      theorem Dvd.dvd.natCast {α : Type u_1} [Semiring α] {m n : } (h : m n) :
      m n

      Alias of Nat.cast_dvd_cast.

      theorem ext_nat' {A : Type u_3} {F : Type u_5} [FunLike F A] [AddMonoid A] [AddMonoidHomClass F A] (f g : F) (h : f 1 = g 1) :
      f = g
      theorem AddMonoidHom.ext_nat {A : Type u_3} [AddMonoid A] {f g : →+ A} :
      f 1 = g 1f = g
      theorem eq_natCast' {A : Type u_3} {F : Type u_5} [FunLike F A] [AddMonoidWithOne A] [AddMonoidHomClass F A] (f : F) (h1 : f 1 = 1) (n : ) :
      f n = n
      theorem map_natCast' {B : Type u_4} {F : Type u_5} [AddMonoidWithOne B] {A : Type u_6} [AddMonoidWithOne A] [FunLike F A B] [AddMonoidHomClass F A B] (f : F) (h : f 1 = 1) (n : ) :
      f n = n
      theorem map_ofNat' {B : Type u_4} {F : Type u_5} [AddMonoidWithOne B] {A : Type u_6} [AddMonoidWithOne A] [FunLike F A B] [AddMonoidHomClass F A B] (f : F) (h : f 1 = 1) (n : ) [n.AtLeastTwo] :
      theorem ext_nat'' {A : Type u_3} {F : Type u_4} [MulZeroOneClass A] [FunLike F A] [MonoidWithZeroHomClass F A] (f g : F) (h_pos : ∀ {n : }, 0 < nf n = g n) :
      f = g

      If two MonoidWithZeroHoms agree on the positive naturals they are equal.

      theorem MonoidWithZeroHom.ext_nat {A : Type u_3} [MulZeroOneClass A] {f g : →*₀ A} :
      (∀ {n : }, 0 < nf n = g n)f = g
      @[simp]
      theorem eq_natCast {R : Type u_3} {F : Type u_5} [NonAssocSemiring R] [FunLike F R] [RingHomClass F R] (f : F) (n : ) :
      f n = n
      @[simp]
      theorem map_natCast {R : Type u_3} {S : Type u_4} {F : Type u_5} [NonAssocSemiring R] [NonAssocSemiring S] [FunLike F R S] [RingHomClass F R S] (f : F) (n : ) :
      f n = n
      theorem map_ofNat {R : Type u_3} {S : Type u_4} {F : Type u_5} [NonAssocSemiring R] [NonAssocSemiring S] [FunLike F R S] [RingHomClass F R S] (f : F) (n : ) [n.AtLeastTwo] :

      This lemma is not marked @[simp] lemma because its #discr_tree_key (for the LHS) would just be DFunLike.coe _ _, due to the ofNat that https://github.com/leanprover/lean4/issues/2867 forces us to include, and therefore it would negatively impact performance.

      If that issue is resolved, this can be marked @[simp].

      theorem ext_nat {R : Type u_3} {F : Type u_5} [NonAssocSemiring R] [FunLike F R] [RingHomClass F R] (f g : F) :
      f = g
      theorem NeZero.nat_of_neZero {R : Type u_6} {S : Type u_7} [Semiring R] [Semiring S] {F : Type u_8} [FunLike F R S] [RingHomClass F R S] (f : F) {n : } [hn : NeZero n] :
      NeZero n

      This is primed to match eq_intCast'.

      @[simp]
      theorem Nat.cast_id (n : ) :
      n = n

      We don't use RingHomClass here, since that might cause type-class slowdown for Subsingleton

      Equations
      def multiplesHom (β : Type u_2) [AddMonoid β] :
      β ( →+ β)

      Additive homomorphisms from are defined by the image of 1.

      Equations
      • multiplesHom β = { toFun := fun (x : β) => { toFun := fun (n : ) => n x, map_zero' := , map_add' := }, invFun := fun (f : →+ β) => f 1, left_inv := , right_inv := }
      Instances For
        def powersHom (α : Type u_1) [Monoid α] :

        Monoid homomorphisms from Multiplicative are defined by the image of Multiplicative.ofAdd 1.

        Equations
        Instances For
          @[simp]
          theorem multiplesHom_apply (β : Type u_2) [AddMonoid β] (x : β) (n : ) :
          ((multiplesHom β) x) n = n x
          @[simp]
          theorem powersHom_apply {α : Type u_1} [Monoid α] (x : α) (n : Multiplicative ) :
          ((powersHom α) x) n = x ^ Multiplicative.toAdd n
          @[simp]
          theorem multiplesHom_symm_apply (β : Type u_2) [AddMonoid β] (f : →+ β) :
          (multiplesHom β).symm f = f 1
          @[simp]
          theorem powersHom_symm_apply {α : Type u_1} [Monoid α] (f : Multiplicative →* α) :
          (powersHom α).symm f = f (Multiplicative.ofAdd 1)
          theorem MonoidHom.apply_mnat {α : Type u_1} [Monoid α] (f : Multiplicative →* α) (n : Multiplicative ) :
          f n = f (Multiplicative.ofAdd 1) ^ Multiplicative.toAdd n
          theorem MonoidHom.ext_mnat {α : Type u_1} [Monoid α] ⦃f g : Multiplicative →* α (h : f (Multiplicative.ofAdd 1) = g (Multiplicative.ofAdd 1)) :
          f = g
          theorem AddMonoidHom.apply_nat (β : Type u_2) [AddMonoid β] (f : →+ β) (n : ) :
          f n = n f 1
          def multiplesAddHom (β : Type u_2) [AddCommMonoid β] :
          β ≃+ ( →+ β)

          If α is commutative, multiplesHom is an additive equivalence.

          Equations
          Instances For
            def powersMulHom (α : Type u_1) [CommMonoid α] :

            If α is commutative, powersHom is a multiplicative equivalence.

            Equations
            Instances For
              @[simp]
              theorem multiplesAddHom_apply (β : Type u_2) [AddCommMonoid β] (x : β) (n : ) :
              ((multiplesAddHom β) x) n = n x
              @[simp]
              theorem powersMulHom_apply (α : Type u_1) [CommMonoid α] (x : α) (n : Multiplicative ) :
              ((powersMulHom α) x) n = x ^ Multiplicative.toAdd n
              @[simp]
              theorem multiplesAddHom_symm_apply (β : Type u_2) [AddCommMonoid β] (f : →+ β) :
              (multiplesAddHom β).symm f = f 1
              @[simp]
              theorem powersMulHom_symm_apply (α : Type u_1) [CommMonoid α] (f : Multiplicative →* α) :
              (powersMulHom α).symm f = f (Multiplicative.ofAdd 1)
              instance Pi.instNatCast {α : Type u_1} {π : αType u_3} [(a : α) → NatCast (π a)] :
              NatCast ((a : α) → π a)
              Equations
              theorem Pi.natCast_apply {α : Type u_1} {π : αType u_3} [(a : α) → NatCast (π a)] (n : ) (a : α) :
              n a = n
              @[simp]
              theorem Pi.natCast_def {α : Type u_1} {π : αType u_3} [(a : α) → NatCast (π a)] (n : ) :
              n = fun (x : α) => n
              @[deprecated Pi.natCast_apply (since := "2024-04-05")]
              theorem Pi.nat_apply {α : Type u_1} {π : αType u_3} [(a : α) → NatCast (π a)] (n : ) (a : α) :
              n a = n

              Alias of Pi.natCast_apply.

              @[deprecated Pi.natCast_def (since := "2024-04-05")]
              theorem Pi.coe_nat {α : Type u_1} {π : αType u_3} [(a : α) → NatCast (π a)] (n : ) :
              n = fun (x : α) => n

              Alias of Pi.natCast_def.

              @[simp]
              theorem Pi.ofNat_apply {α : Type u_1} {π : αType u_3} [(a : α) → NatCast (π a)] (n : ) [n.AtLeastTwo] (a : α) :
              OfNat.ofNat n a = n
              theorem Sum.elim_natCast_natCast {α : Type u_3} {β : Type u_4} {γ : Type u_5} [NatCast γ] (n : ) :
              Sum.elim n n = n