Documentation

Mathlib.RingTheory.Ideal.Span

Ideals generated by a set of elements #

This file defines Ideal.span s as the ideal generated by the subset s of the ring.

TODO #

Support right ideals, and two-sided ideals over non-commutative rings.

A ring is a principal ideal ring if all (left) ideals are principal.

Instances
    def Ideal.span {α : Type u} [Semiring α] (s : Set α) :

    The ideal generated by a subset of a ring

    Equations
    Instances For
      @[simp]
      theorem Ideal.submodule_span_eq {α : Type u} [Semiring α] {s : Set α} :
      @[simp]
      @[simp]
      theorem Ideal.span_union {α : Type u} [Semiring α] (s t : Set α) :
      theorem Ideal.span_iUnion {α : Type u} [Semiring α] {ι : Sort u_1} (s : ιSet α) :
      Ideal.span (⋃ (i : ι), s i) = ⨆ (i : ι), Ideal.span (s i)
      theorem Ideal.mem_span {α : Type u} [Semiring α] {s : Set α} (x : α) :
      x Ideal.span s ∀ (p : Ideal α), s px p
      theorem Ideal.subset_span {α : Type u} [Semiring α] {s : Set α} :
      s (Ideal.span s)
      theorem Ideal.span_le {α : Type u} [Semiring α] {s : Set α} {I : Ideal α} :
      Ideal.span s I s I
      theorem Ideal.span_mono {α : Type u} [Semiring α] {s t : Set α} :
      @[simp]
      theorem Ideal.span_eq {α : Type u} [Semiring α] (I : Ideal α) :
      Ideal.span I = I
      @[simp]
      theorem Ideal.mem_span_insert {α : Type u} [Semiring α] {s : Set α} {x y : α} :
      x Ideal.span (insert y s) ∃ (a : α), zIdeal.span s, x = a * y + z
      theorem Ideal.mem_span_singleton' {α : Type u} [Semiring α] {x y : α} :
      x Ideal.span {y} ∃ (a : α), a * y = x
      theorem Ideal.mem_span_singleton_self {α : Type u} [Semiring α] (x : α) :
      theorem Ideal.span_singleton_le_iff_mem {α : Type u} [Semiring α] (I : Ideal α) {x : α} :
      Ideal.span {x} I x I
      theorem Ideal.span_singleton_mul_left_unit {α : Type u} [Semiring α] {a : α} (h2 : IsUnit a) (x : α) :
      theorem Ideal.span_insert {α : Type u} [Semiring α] (x : α) (s : Set α) :
      theorem Ideal.span_eq_bot {α : Type u} [Semiring α] {s : Set α} :
      Ideal.span s = xs, x = 0
      @[simp]
      theorem Ideal.span_singleton_eq_bot {α : Type u} [Semiring α] {x : α} :
      Ideal.span {x} = x = 0
      theorem Ideal.span_singleton_ne_top {α : Type u_1} [CommSemiring α] {x : α} (hx : ¬IsUnit x) :
      @[simp]
      theorem Ideal.span_zero {α : Type u} [Semiring α] :
      @[simp]
      theorem Ideal.span_one {α : Type u} [Semiring α] :
      theorem Ideal.span_eq_top_iff_finite {α : Type u} [Semiring α] (s : Set α) :
      Ideal.span s = ∃ (s' : Finset α), s' s Ideal.span s' =
      theorem Ideal.mem_span_singleton_sup {α : Type u} [Semiring α] {x y : α} {I : Ideal α} :
      x Ideal.span {y} I ∃ (a : α), bI, a * y + b = x
      def Ideal.ofRel {α : Type u} [Semiring α] (r : ααProp) :

      The ideal generated by an arbitrary binary relation.

      Equations
      Instances For
        theorem Ideal.zero_ne_one_of_proper {α : Type u} [Semiring α] {I : Ideal α} (h : I ) :
        0 1
        theorem Ideal.span_pair_comm {α : Type u} [Semiring α] {x y : α} :
        Ideal.span {x, y} = Ideal.span {y, x}
        theorem Ideal.mem_span_pair {α : Type u} [Semiring α] {x y z : α} :
        z Ideal.span {x, y} ∃ (a : α) (b : α), a * x + b * y = z
        @[simp]
        theorem Ideal.span_pair_add_mul_left {R : Type u} [CommRing R] {x y : R} (z : R) :
        Ideal.span {x + y * z, y} = Ideal.span {x, y}
        @[simp]
        theorem Ideal.span_pair_add_mul_right {R : Type u} [CommRing R] {x y : R} (z : R) :
        Ideal.span {x, y + x * z} = Ideal.span {x, y}
        theorem Ideal.mem_span_singleton {α : Type u} [CommSemiring α] {x y : α} :
        x Ideal.span {y} y x
        theorem Ideal.span_singleton_mul_right_unit {α : Type u} [CommSemiring α] {a : α} (h2 : IsUnit a) (x : α) :
        @[simp]
        theorem Ideal.span_singleton_eq_top {α : Type u} [CommSemiring α] {x : α} :
        theorem Ideal.factors_decreasing {α : Type u} [CommSemiring α] [IsDomain α] (b₁ b₂ : α) (h₁ : b₁ 0) (h₂ : ¬IsUnit b₂) :
        Ideal.span {b₁ * b₂} < Ideal.span {b₁}
        theorem Ideal.mem_span_insert' {α : Type u} [Ring α] {s : Set α} {x y : α} :
        x Ideal.span (insert y s) ∃ (a : α), x + a * y Ideal.span s
        @[simp]
        theorem Ideal.span_singleton_neg {α : Type u} [Ring α] (x : α) :