Documentation

Mathlib.RingTheory.RootsOfUnity.Basic

Roots of unity #

We define roots of unity in the context of an arbitrary commutative monoid, as a subgroup of the group of units.

Main definitions #

Main results #

Implementation details #

It is desirable that rootsOfUnity is a subgroup, and it will mainly be applied to rings (e.g. the ring of integers in a number field) and fields. We therefore implement it as a subgroup of the units of a commutative monoid.

We have chosen to define rootsOfUnity n for n : ℕ and add a [NeZero n] typeclass assumption when we need n to be non-zero (which is the case for most interesting statements). Note that rootsOfUnity 0 M is the top subgroup of (as the condition ζ^0 = 1 is satisfied for all units).

def rootsOfUnity (k : ) (M : Type u_7) [CommMonoid M] :

rootsOfUnity k M is the subgroup of elements m : Mˣ that satisfy m ^ k = 1.

Equations
  • rootsOfUnity k M = { carrier := {ζ : Mˣ | ζ ^ k = 1}, mul_mem' := , one_mem' := , inv_mem' := }
Instances For
    @[simp]
    theorem mem_rootsOfUnity {M : Type u_1} [CommMonoid M] (k : ) (ζ : Mˣ) :
    ζ rootsOfUnity k M ζ ^ k = 1
    theorem mem_rootsOfUnity' {M : Type u_1} [CommMonoid M] (k : ) (ζ : Mˣ) :
    ζ rootsOfUnity k M ζ ^ k = 1

    A variant of mem_rootsOfUnity using ζ : M.

    @[simp]
    theorem rootsOfUnity_one (M : Type u_7) [CommMonoid M] :
    @[simp]
    theorem rootsOfUnity_zero (M : Type u_7) [CommMonoid M] :
    theorem rootsOfUnity.coe_injective {M : Type u_1} [CommMonoid M] {n : } :
    Function.Injective fun (x : (rootsOfUnity n M)) => x
    def rootsOfUnity.mkOfPowEq {M : Type u_1} [CommMonoid M] (ζ : M) {n : } [NeZero n] (h : ζ ^ n = 1) :
    (rootsOfUnity n M)

    Make an element of rootsOfUnity from a member of the base ring, and a proof that it has a positive power equal to one.

    Equations
    Instances For
      @[simp]
      theorem rootsOfUnity.val_mkOfPowEq_coe {M : Type u_1} [CommMonoid M] (ζ : M) {n : } [NeZero n] (h : ζ ^ n = 1) :
      (rootsOfUnity.mkOfPowEq ζ h) = ζ
      @[simp]
      theorem rootsOfUnity.coe_mkOfPowEq {M : Type u_1} [CommMonoid M] {ζ : M} {n : } [NeZero n] (h : ζ ^ n = 1) :
      (rootsOfUnity.mkOfPowEq ζ h) = ζ
      theorem rootsOfUnity_le_of_dvd {M : Type u_1} [CommMonoid M] {k l : } (h : k l) :
      theorem map_rootsOfUnity {M : Type u_1} {N : Type u_2} [CommMonoid M] [CommMonoid N] (f : Mˣ →* Nˣ) (k : ) :
      theorem rootsOfUnity.coe_pow {R : Type u_4} {k : } [CommMonoid R] (ζ : (rootsOfUnity k R)) (m : ) :
      (ζ ^ m) = ζ ^ m
      def rootsOfUnityUnitsMulEquiv (M : Type u_7) [CommMonoid M] (n : ) :
      (rootsOfUnity n Mˣ) ≃* (rootsOfUnity n M)

      The canonical isomorphism from the nth roots of unity in to the nth roots of unity in M.

      Equations
      Instances For
        def restrictRootsOfUnity {R : Type u_4} {S : Type u_5} {F : Type u_6} [CommMonoid R] [CommMonoid S] [FunLike F R S] [MonoidHomClass F R S] (σ : F) (n : ) :
        (rootsOfUnity n R) →* (rootsOfUnity n S)

        Restrict a ring homomorphism to the nth roots of unity.

        Equations
        Instances For
          @[simp]
          theorem restrictRootsOfUnity_coe_apply {R : Type u_4} {S : Type u_5} {F : Type u_6} {k : } [CommMonoid R] [CommMonoid S] [FunLike F R S] [MonoidHomClass F R S] (σ : F) (ζ : (rootsOfUnity k R)) :
          ((restrictRootsOfUnity σ k) ζ) = σ ζ
          def MulEquiv.restrictRootsOfUnity {R : Type u_4} {S : Type u_5} [CommMonoid R] [CommMonoid S] (σ : R ≃* S) (n : ) :
          (rootsOfUnity n R) ≃* (rootsOfUnity n S)

          Restrict a monoid isomorphism to the nth roots of unity.

          Equations
          Instances For
            @[simp]
            theorem MulEquiv.restrictRootsOfUnity_coe_apply {R : Type u_4} {S : Type u_5} {k : } [CommMonoid R] [CommMonoid S] (σ : R ≃* S) (ζ : (rootsOfUnity k R)) :
            ((σ.restrictRootsOfUnity k) ζ) = σ ζ
            @[simp]
            theorem MulEquiv.restrictRootsOfUnity_symm {R : Type u_4} {S : Type u_5} {k : } [CommMonoid R] [CommMonoid S] (σ : R ≃* S) :
            (σ.restrictRootsOfUnity k).symm = σ.symm.restrictRootsOfUnity k
            def rootsOfUnityEquivNthRoots (R : Type u_4) (k : ) [NeZero k] [CommRing R] [IsDomain R] :
            (rootsOfUnity k R) { x : R // x Polynomial.nthRoots k 1 }

            Equivalence between the k-th roots of unity in R and the k-th roots of 1.

            This is implemented as equivalence of subtypes, because rootsOfUnity is a subgroup of the group of units, whereas nthRoots is a multiset.

            Equations
            • One or more equations did not get rendered due to their size.
            Instances For
              @[simp]
              theorem rootsOfUnityEquivNthRoots_apply {R : Type u_4} {k : } [NeZero k] [CommRing R] [IsDomain R] (x : (rootsOfUnity k R)) :
              ((rootsOfUnityEquivNthRoots R k) x) = x
              @[simp]
              theorem rootsOfUnityEquivNthRoots_symm_apply {R : Type u_4} {k : } [NeZero k] [CommRing R] [IsDomain R] (x : { x : R // x Polynomial.nthRoots k 1 }) :
              ((rootsOfUnityEquivNthRoots R k).symm x) = x
              instance rootsOfUnity.isCyclic (R : Type u_4) (k : ) [NeZero k] [CommRing R] [IsDomain R] :
              theorem card_rootsOfUnity (R : Type u_4) (k : ) [NeZero k] [CommRing R] [IsDomain R] :
              theorem map_rootsOfUnity_eq_pow_self {R : Type u_4} {F : Type u_6} {k : } [NeZero k] [CommRing R] [IsDomain R] [FunLike F R R] [RingHomClass F R R] (σ : F) (ζ : (rootsOfUnity k R)) :
              ∃ (m : ), σ ζ = ζ ^ m
              theorem mem_rootsOfUnity_prime_pow_mul_iff (R : Type u_4) [CommRing R] [IsReduced R] (p k m : ) [ExpChar R p] {ζ : Rˣ} :
              ζ rootsOfUnity (p ^ k * m) R ζ rootsOfUnity m R
              @[simp]
              theorem mem_rootsOfUnity_prime_pow_mul_iff' (R : Type u_4) [CommRing R] [IsReduced R] (p k m : ) [ExpChar R p] {ζ : Rˣ} :
              ζ ^ (p ^ k * m) = 1 ζ rootsOfUnity m R

              A variant of mem_rootsOfUnity_prime_pow_mul_iff in terms of ζ ^ _.

              noncomputable def IsCyclic.monoidHomMulEquivRootsOfUnityOfGenerator {G : Type u_7} [CommGroup G] {g : G} (hg : ∀ (x : G), x Subgroup.zpowers g) (G' : Type u_8) [CommGroup G'] :
              (G →* G') ≃* (rootsOfUnity (Nat.card G) G')

              The isomorphism from the group of group homomorphisms from a finite cyclic group G of order n into another group G' to the group of nth roots of unity in G' determined by a generator g of G. It sends φ : G →* G' to φ g.

              Equations
              • One or more equations did not get rendered due to their size.
              Instances For
                theorem IsCyclic.monoidHom_mulEquiv_rootsOfUnity (G : Type u_7) [CommGroup G] [IsCyclic G] (G' : Type u_8) [CommGroup G'] :
                Nonempty ((G →* G') ≃* (rootsOfUnity (Nat.card G) G'))

                The group of group homomorphisms from a finite cyclic group G of order n into another group G' is (noncanonically) isomorphic to the group of nth roots of unity in G'.