Documentation

Mathlib.Topology.Algebra.Module.Basic

Theory of topological modules #

We use the class ContinuousSMul for topological (semi) modules and topological vector spaces.

theorem ContinuousSMul.of_nhds_zero {R : Type u_1} {M : Type u_2} [Ring R] [TopologicalSpace R] [TopologicalSpace M] [AddCommGroup M] [Module R M] [TopologicalRing R] [TopologicalAddGroup M] (hmul : Filter.Tendsto (fun (p : R × M) => p.1 p.2) (nhds 0 ×ˢ nhds 0) (nhds 0)) (hmulleft : ∀ (m : M), Filter.Tendsto (fun (a : R) => a m) (nhds 0) (nhds 0)) (hmulright : ∀ (a : R), Filter.Tendsto (fun (m : M) => a m) (nhds 0) (nhds 0)) :
theorem Submodule.eq_top_of_nonempty_interior' {R : Type u_1} {M : Type u_2} [Ring R] [TopologicalSpace R] [TopologicalSpace M] [AddCommGroup M] [ContinuousAdd M] [Module R M] [ContinuousSMul R M] [(nhdsWithin 0 {x : R | IsUnit x}).NeBot] (s : Submodule R M) (hs : (interior s).Nonempty) :
s =

If M is a topological module over R and 0 is a limit of invertible elements of R, then is the only submodule of M with a nonempty interior. This is the case, e.g., if R is a nontrivially normed field.

theorem Module.punctured_nhds_neBot (R : Type u_1) (M : Type u_2) [Ring R] [TopologicalSpace R] [TopologicalSpace M] [AddCommGroup M] [ContinuousAdd M] [Module R M] [ContinuousSMul R M] [Nontrivial M] [(nhdsWithin 0 {0}).NeBot] [NoZeroSMulDivisors R M] (x : M) :
(nhdsWithin x {x}).NeBot

Let R be a topological ring such that zero is not an isolated point (e.g., a nontrivially normed field, see NormedField.punctured_nhds_neBot). Let M be a nontrivial module over R such that c • x = 0 implies c = 0 ∨ x = 0. Then M has no isolated points. We formulate this using NeBot (𝓝[≠] x).

This lemma is not an instance because Lean would need to find [ContinuousSMul ?m_1 M] with unknown ?m_1. We register this as an instance for R = ℝ in Real.punctured_nhds_module_neBot. One can also use haveI := Module.punctured_nhds_neBot R M in a proof.

theorem continuousSMul_induced {R : Type u_1} {M₁ : Type u_2} {M₂ : Type u_3} [SMul R M₁] [SMul R M₂] [u : TopologicalSpace R] {t : TopologicalSpace M₂} [ContinuousSMul R M₂] {F : Type u_4} [FunLike F M₁ M₂] [MulActionHomClass F R M₁ M₂] (f : F) :

The span of a separable subset with respect to a separable scalar ring is again separable.

instance Submodule.topologicalAddGroup {α : Type u_1} {β : Type u_2} [TopologicalSpace β] [Ring α] [AddCommGroup β] [Module α β] [TopologicalAddGroup β] (S : Submodule α β) :
theorem Submodule.mapsTo_smul_closure {R : Type u} {M : Type v} [Semiring R] [TopologicalSpace M] [AddCommMonoid M] [Module R M] [ContinuousConstSMul R M] (s : Submodule R M) (c : R) :
Set.MapsTo (fun (x : M) => c x) (closure s) (closure s)
theorem Submodule.smul_closure_subset {R : Type u} {M : Type v} [Semiring R] [TopologicalSpace M] [AddCommMonoid M] [Module R M] [ContinuousConstSMul R M] (s : Submodule R M) (c : R) :
c closure s closure s

The (topological-space) closure of a submodule of a topological R-module M is itself a submodule.

Equations
  • s.topologicalClosure = { toAddSubmonoid := s.topologicalClosure, smul_mem' := }
Instances For
    @[simp]
    theorem Submodule.topologicalClosure_coe {R : Type u} {M : Type v} [Semiring R] [TopologicalSpace M] [AddCommMonoid M] [Module R M] [ContinuousConstSMul R M] [ContinuousAdd M] (s : Submodule R M) :
    s.topologicalClosure = closure s
    theorem Submodule.le_topologicalClosure {R : Type u} {M : Type v} [Semiring R] [TopologicalSpace M] [AddCommMonoid M] [Module R M] [ContinuousConstSMul R M] [ContinuousAdd M] (s : Submodule R M) :
    s s.topologicalClosure
    theorem Submodule.isClosed_topologicalClosure {R : Type u} {M : Type v} [Semiring R] [TopologicalSpace M] [AddCommMonoid M] [Module R M] [ContinuousConstSMul R M] [ContinuousAdd M] (s : Submodule R M) :
    IsClosed s.topologicalClosure
    theorem Submodule.topologicalClosure_minimal {R : Type u} {M : Type v} [Semiring R] [TopologicalSpace M] [AddCommMonoid M] [Module R M] [ContinuousConstSMul R M] [ContinuousAdd M] (s : Submodule R M) {t : Submodule R M} (h : s t) (ht : IsClosed t) :
    s.topologicalClosure t
    theorem Submodule.topologicalClosure_mono {R : Type u} {M : Type v} [Semiring R] [TopologicalSpace M] [AddCommMonoid M] [Module R M] [ContinuousConstSMul R M] [ContinuousAdd M] {s t : Submodule R M} (h : s t) :
    s.topologicalClosure t.topologicalClosure
    theorem IsClosed.submodule_topologicalClosure_eq {R : Type u} {M : Type v} [Semiring R] [TopologicalSpace M] [AddCommMonoid M] [Module R M] [ContinuousConstSMul R M] [ContinuousAdd M] {s : Submodule R M} (hs : IsClosed s) :
    s.topologicalClosure = s

    The topological closure of a closed submodule s is equal to s.

    theorem Submodule.dense_iff_topologicalClosure_eq_top {R : Type u} {M : Type v} [Semiring R] [TopologicalSpace M] [AddCommMonoid M] [Module R M] [ContinuousConstSMul R M] [ContinuousAdd M] {s : Submodule R M} :
    Dense s s.topologicalClosure =

    A subspace is dense iff its topological closure is the entire space.

    instance Submodule.topologicalClosure.completeSpace {R : Type u} [Semiring R] {M' : Type u_1} [AddCommMonoid M'] [Module R M'] [UniformSpace M'] [ContinuousAdd M'] [ContinuousConstSMul R M'] [CompleteSpace M'] (U : Submodule R M') :
    CompleteSpace U.topologicalClosure

    A maximal proper subspace of a topological module (i.e a Submodule satisfying IsCoatom) is either closed or dense.

    theorem LinearMap.continuous_on_pi {ι : Type u_1} {R : Type u_2} {M : Type u_3} [Finite ι] [Semiring R] [TopologicalSpace R] [AddCommMonoid M] [Module R M] [TopologicalSpace M] [ContinuousAdd M] [ContinuousSMul R M] (f : (ιR) →ₗ[R] M) :
    def linearMapOfMemClosureRangeCoe {M₁ : Type u_1} {M₂ : Type u_2} {R : Type u_4} {S : Type u_5} [TopologicalSpace M₂] [T2Space M₂] [Semiring R] [Semiring S] [AddCommMonoid M₁] [AddCommMonoid M₂] [Module R M₁] [Module S M₂] [ContinuousConstSMul S M₂] [ContinuousAdd M₂] {σ : R →+* S} (f : M₁M₂) (hf : f closure (Set.range DFunLike.coe)) :
    M₁ →ₛₗ[σ] M₂

    Constructs a bundled linear map from a function and a proof that this function belongs to the closure of the set of linear maps.

    Equations
    Instances For
      @[simp]
      theorem linearMapOfMemClosureRangeCoe_apply {M₁ : Type u_1} {M₂ : Type u_2} {R : Type u_4} {S : Type u_5} [TopologicalSpace M₂] [T2Space M₂] [Semiring R] [Semiring S] [AddCommMonoid M₁] [AddCommMonoid M₂] [Module R M₁] [Module S M₂] [ContinuousConstSMul S M₂] [ContinuousAdd M₂] {σ : R →+* S} (f : M₁M₂) (hf : f closure (Set.range DFunLike.coe)) :
      def linearMapOfTendsto {M₁ : Type u_1} {M₂ : Type u_2} {α : Type u_3} {R : Type u_4} {S : Type u_5} [TopologicalSpace M₂] [T2Space M₂] [Semiring R] [Semiring S] [AddCommMonoid M₁] [AddCommMonoid M₂] [Module R M₁] [Module S M₂] [ContinuousConstSMul S M₂] [ContinuousAdd M₂] {σ : R →+* S} {l : Filter α} (f : M₁M₂) (g : αM₁ →ₛₗ[σ] M₂) [l.NeBot] (h : Filter.Tendsto (fun (a : α) (x : M₁) => (g a) x) l (nhds f)) :
      M₁ →ₛₗ[σ] M₂

      Construct a bundled linear map from a pointwise limit of linear maps

      Equations
      Instances For
        @[simp]
        theorem linearMapOfTendsto_apply {M₁ : Type u_1} {M₂ : Type u_2} {α : Type u_3} {R : Type u_4} {S : Type u_5} [TopologicalSpace M₂] [T2Space M₂] [Semiring R] [Semiring S] [AddCommMonoid M₁] [AddCommMonoid M₂] [Module R M₁] [Module S M₂] [ContinuousConstSMul S M₂] [ContinuousAdd M₂] {σ : R →+* S} {l : Filter α} (f : M₁M₂) (g : αM₁ →ₛₗ[σ] M₂) [l.NeBot] (h : Filter.Tendsto (fun (a : α) (x : M₁) => (g a) x) l (nhds f)) :
        (linearMapOfTendsto f g h) = f
        theorem LinearMap.isClosed_range_coe (M₁ : Type u_1) (M₂ : Type u_2) {R : Type u_4} {S : Type u_5} [TopologicalSpace M₂] [T2Space M₂] [Semiring R] [Semiring S] [AddCommMonoid M₁] [AddCommMonoid M₂] [Module R M₁] [Module S M₂] [ContinuousConstSMul S M₂] [ContinuousAdd M₂] (σ : R →+* S) :
        theorem Submodule.isOpenMap_mkQ {R : Type u_1} {M : Type u_2} [Ring R] [AddCommGroup M] [Module R M] [TopologicalSpace M] (S : Submodule R M) [ContinuousAdd M] :
        IsOpenMap S.mkQ