Documentation

Mathlib.Algebra.Ring.Subring.MulOpposite

Subring of opposite rings #

For every ring R, we construct an equivalence between subrings of R and that of Rᵐᵒᵖ.

def Subring.op {R : Type u_2} [Ring R] (S : Subring R) :

Pull a subring back to an opposite subring along MulOpposite.unop

Equations
  • S.op = { toSubsemiring := S.op, neg_mem' := }
Instances For
    @[simp]
    theorem Subring.coe_op {R : Type u_2} [Ring R] (S : Subring R) :
    @[simp]
    theorem Subring.op_toSubsemiring {R : Type u_2} [Ring R] (S : Subring R) :
    @[simp]
    theorem Subring.mem_op {R : Type u_2} [Ring R] {x : Rᵐᵒᵖ} {S : Subring R} :
    def Subring.unop {R : Type u_2} [Ring R] (S : Subring Rᵐᵒᵖ) :

    Pull an opposite subring back to a subring along MulOpposite.op

    Equations
    • S.unop = { toSubsemiring := S.unop, neg_mem' := }
    Instances For
      @[simp]
      theorem Subring.coe_unop {R : Type u_2} [Ring R] (S : Subring Rᵐᵒᵖ) :
      @[simp]
      theorem Subring.mem_unop {R : Type u_2} [Ring R] {x : R} {S : Subring Rᵐᵒᵖ} :
      @[simp]
      theorem Subring.unop_op {R : Type u_2} [Ring R] (S : Subring R) :
      S.op.unop = S
      @[simp]
      theorem Subring.op_unop {R : Type u_2} [Ring R] (S : Subring Rᵐᵒᵖ) :
      S.unop.op = S

      Lattice results #

      theorem Subring.op_le_iff {R : Type u_2} [Ring R] {S₁ : Subring R} {S₂ : Subring Rᵐᵒᵖ} :
      S₁.op S₂ S₁ S₂.unop
      theorem Subring.le_op_iff {R : Type u_2} [Ring R] {S₁ : Subring Rᵐᵒᵖ} {S₂ : Subring R} :
      S₁ S₂.op S₁.unop S₂
      @[simp]
      theorem Subring.op_le_op_iff {R : Type u_2} [Ring R] {S₁ S₂ : Subring R} :
      S₁.op S₂.op S₁ S₂
      @[simp]
      theorem Subring.unop_le_unop_iff {R : Type u_2} [Ring R] {S₁ S₂ : Subring Rᵐᵒᵖ} :
      S₁.unop S₂.unop S₁ S₂

      A subring S of R determines a subring S.op of the opposite ring Rᵐᵒᵖ.

      Equations
      Instances For
        @[simp]
        theorem Subring.opEquiv_apply {R : Type u_2} [Ring R] (S : Subring R) :
        @[simp]
        theorem Subring.op_inj {R : Type u_2} [Ring R] {S T : Subring R} :
        S.op = T.op S = T
        @[simp]
        theorem Subring.unop_inj {R : Type u_2} [Ring R] {S T : Subring Rᵐᵒᵖ} :
        S.unop = T.unop S = T
        @[simp]
        theorem Subring.op_bot {R : Type u_2} [Ring R] :
        @[simp]
        theorem Subring.op_eq_bot {R : Type u_2} [Ring R] {S : Subring R} :
        S.op = S =
        @[simp]
        theorem Subring.unop_bot {R : Type u_2} [Ring R] :
        @[simp]
        theorem Subring.unop_eq_bot {R : Type u_2} [Ring R] {S : Subring Rᵐᵒᵖ} :
        @[simp]
        theorem Subring.op_top {R : Type u_2} [Ring R] :
        @[simp]
        theorem Subring.op_eq_top {R : Type u_2} [Ring R] {S : Subring R} :
        S.op = S =
        @[simp]
        theorem Subring.unop_top {R : Type u_2} [Ring R] :
        @[simp]
        theorem Subring.unop_eq_top {R : Type u_2} [Ring R] {S : Subring Rᵐᵒᵖ} :
        theorem Subring.op_sup {R : Type u_2} [Ring R] (S₁ S₂ : Subring R) :
        (S₁ S₂).op = S₁.op S₂.op
        theorem Subring.unop_sup {R : Type u_2} [Ring R] (S₁ S₂ : Subring Rᵐᵒᵖ) :
        (S₁ S₂).unop = S₁.unop S₂.unop
        theorem Subring.op_inf {R : Type u_2} [Ring R] (S₁ S₂ : Subring R) :
        (S₁ S₂).op = S₁.op S₂.op
        theorem Subring.unop_inf {R : Type u_2} [Ring R] (S₁ S₂ : Subring Rᵐᵒᵖ) :
        (S₁ S₂).unop = S₁.unop S₂.unop
        theorem Subring.op_sSup {R : Type u_2} [Ring R] (S : Set (Subring R)) :
        theorem Subring.op_sInf {R : Type u_2} [Ring R] (S : Set (Subring R)) :
        theorem Subring.op_iSup {ι : Sort u_1} {R : Type u_2} [Ring R] (S : ιSubring R) :
        (iSup S).op = ⨆ (i : ι), (S i).op
        theorem Subring.unop_iSup {ι : Sort u_1} {R : Type u_2} [Ring R] (S : ιSubring Rᵐᵒᵖ) :
        (iSup S).unop = ⨆ (i : ι), (S i).unop
        theorem Subring.op_iInf {ι : Sort u_1} {R : Type u_2} [Ring R] (S : ιSubring R) :
        (iInf S).op = ⨅ (i : ι), (S i).op
        theorem Subring.unop_iInf {ι : Sort u_1} {R : Type u_2} [Ring R] (S : ιSubring Rᵐᵒᵖ) :
        (iInf S).unop = ⨅ (i : ι), (S i).unop
        def Subring.addEquivOp {R : Type u_2} [Ring R] (S : Subring R) :
        S ≃+ S.op

        Bijection between a subring S and its opposite.

        Equations
        Instances For
          @[simp]
          theorem Subring.addEquivOp_symm_apply_coe {R : Type u_2} [Ring R] (S : Subring R) (b : S.op) :
          @[simp]
          theorem Subring.addEquivOp_apply_coe {R : Type u_2} [Ring R] (S : Subring R) (a : S.toSubmonoid) :
          def Subring.ringEquivOpMop {R : Type u_2} [Ring R] (S : Subring R) :
          S ≃+* (↥S.op)ᵐᵒᵖ

          Bijection between a subring S and MulOpposite of its opposite.

          Equations
          Instances For
            @[simp]
            theorem Subring.ringEquivOpMop_apply {R : Type u_2} [Ring R] (S : Subring R) (a✝ : S.toSubsemiring) :
            @[simp]
            theorem Subring.ringEquivOpMop_symm_apply_coe {R : Type u_2} [Ring R] (S : Subring R) (a✝ : (↥S.op)ᵐᵒᵖ) :
            def Subring.mopRingEquivOp {R : Type u_2} [Ring R] (S : Subring R) :
            (↥S)ᵐᵒᵖ ≃+* S.op

            Bijection between MulOpposite of a subring S and its opposite.

            Equations
            Instances For
              @[simp]
              theorem Subring.mopRingEquivOp_apply_coe {R : Type u_2} [Ring R] (S : Subring R) (a✝ : (↥S.toSubsemiring)ᵐᵒᵖ) :
              @[simp]
              theorem Subring.mopRingEquivOp_symm_apply {R : Type u_2} [Ring R] (S : Subring R) (a✝ : S.op) :