Documentation

Mathlib.Analysis.Meromorphic.Order

Orders of Meromorphic Functions #

This file defines the order of a meromorphic function f at a point zโ‚€, as an element of โ„ค โˆช {โˆž}.

TODO: Uniformize API between analytic and meromorphic functions

Order at a Point: Definition and Characterization #

noncomputable def MeromorphicAt.order {๐•œ : Type u_1} [NontriviallyNormedField ๐•œ] {E : Type u_2} [NormedAddCommGroup E] [NormedSpace ๐•œ E] {f : ๐•œ โ†’ E} {x : ๐•œ} (hf : MeromorphicAt f x) :

The order of a meromorphic function f at zโ‚€, as an element of โ„ค โˆช {โˆž}.

The order is defined to be โˆž if f is identically 0 on a neighbourhood of zโ‚€, and otherwise the unique n such that f can locally be written as f z = (z - zโ‚€) ^ n โ€ข g z, where g is analytic and does not vanish at zโ‚€. See MeromorphicAt.order_eq_top_iff and MeromorphicAt.order_eq_nat_iff for these equivalences.

Equations
Instances For
    theorem MeromorphicAt.order_eq_top_iff {๐•œ : Type u_1} [NontriviallyNormedField ๐•œ] {E : Type u_2} [NormedAddCommGroup E] [NormedSpace ๐•œ E] {f : ๐•œ โ†’ E} {x : ๐•œ} (hf : MeromorphicAt f x) :

    The order of a meromorphic function f at a zโ‚€ is infinity iff f vanishes locally around zโ‚€.

    theorem MeromorphicAt.order_eq_int_iff {๐•œ : Type u_1} [NontriviallyNormedField ๐•œ] {E : Type u_2} [NormedAddCommGroup E] [NormedSpace ๐•œ E] {f : ๐•œ โ†’ E} {x : ๐•œ} (hf : MeromorphicAt f x) (n : โ„ค) :
    hf.order = โ†‘n โ†” โˆƒ (g : ๐•œ โ†’ E), AnalyticAt ๐•œ g x โˆง g x โ‰  0 โˆง โˆ€แถ  (z : ๐•œ) in nhdsWithin x {x}แถœ, f z = (z - x) ^ n โ€ข g z

    The order of a meromorphic function f at zโ‚€ equals an integer n iff f can locally be written as f z = (z - zโ‚€) ^ n โ€ข g z, where g is analytic and does not vanish at zโ‚€.

    theorem AnalyticAt.meromorphicAt_order {๐•œ : Type u_1} [NontriviallyNormedField ๐•œ] {E : Type u_2} [NormedAddCommGroup E] [NormedSpace ๐•œ E] {f : ๐•œ โ†’ E} {x : ๐•œ} (hf : AnalyticAt ๐•œ f x) :

    Compatibility of notions of order for analytic and meromorphic functions.

    Order at a Point: Behaviour under Ring Operations #

    We establish additivity of the order under multiplication and taking powers.

    TODO: Behaviour under Addition/Subtraction. API unification with analytic functions

    theorem MeromorphicAt.order_smul {๐•œ : Type u_1} [NontriviallyNormedField ๐•œ] {E : Type u_2} [NormedAddCommGroup E] [NormedSpace ๐•œ E] {f : ๐•œ โ†’ ๐•œ} {g : ๐•œ โ†’ E} {x : ๐•œ} (hf : MeromorphicAt f x) (hg : MeromorphicAt g x) :
    โ‹ฏ.order = hf.order + hg.order

    The order is additive when multiplying scalar-valued and vector-valued meromorphic functions.

    theorem MeromorphicAt.order_mul {๐•œ : Type u_1} [NontriviallyNormedField ๐•œ] {f g : ๐•œ โ†’ ๐•œ} {x : ๐•œ} (hf : MeromorphicAt f x) (hg : MeromorphicAt g x) :
    โ‹ฏ.order = hf.order + hg.order

    The order is additive when multiplying meromorphic functions.

    Level Sets of the Order Function #

    TODO: investigate whether codiscrete_setOf_order_eq_zero_or_top really needs a completeness hypothesis.

    theorem MeromorphicOn.isClopen_setOf_order_eq_top {๐•œ : Type u_1} [NontriviallyNormedField ๐•œ] {E : Type u_2} [NormedAddCommGroup E] [NormedSpace ๐•œ E] {f : ๐•œ โ†’ E} {U : Set ๐•œ} (hf : MeromorphicOn f U) :
    IsClopen {u : โ†‘U | โ‹ฏ.order = โŠค}

    The set where a meromorphic function has infinite order is clopen in its domain of meromorphy.

    theorem MeromorphicOn.exists_order_ne_top_iff_forall {๐•œ : Type u_1} [NontriviallyNormedField ๐•œ] {E : Type u_2} [NormedAddCommGroup E] [NormedSpace ๐•œ E] {f : ๐•œ โ†’ E} {U : Set ๐•œ} (hf : MeromorphicOn f U) (hU : IsConnected U) :
    (โˆƒ (u : โ†‘U), โ‹ฏ.order โ‰  โŠค) โ†” โˆ€ (u : โ†‘U), โ‹ฏ.order โ‰  โŠค

    On a connected set, there exists a point where a meromorphic function f has finite order iff f has finite order at every point.

    theorem MeromorphicOn.order_ne_top_of_isPreconnected {๐•œ : Type u_1} [NontriviallyNormedField ๐•œ] {E : Type u_2} [NormedAddCommGroup E] [NormedSpace ๐•œ E] {f : ๐•œ โ†’ E} {U : Set ๐•œ} (hf : MeromorphicOn f U) {x y : ๐•œ} (hU : IsPreconnected U) (hโ‚x : x โˆˆ U) (hy : y โˆˆ U) (hโ‚‚x : โ‹ฏ.order โ‰  โŠค) :

    On a preconnected set, a meromorphic function has finite order at one point if it has finite order at another point.

    theorem MeromorphicOn.codiscrete_setOf_order_eq_zero_or_top {๐•œ : Type u_1} [NontriviallyNormedField ๐•œ] {E : Type u_2} [NormedAddCommGroup E] [NormedSpace ๐•œ E] {f : ๐•œ โ†’ E} {U : Set ๐•œ} (hf : MeromorphicOn f U) [CompleteSpace E] :
    {u : โ†‘U | โ‹ฏ.order = 0 โˆจ โ‹ฏ.order = โŠค} โˆˆ Filter.codiscrete โ†‘U

    If the target is a complete space, then the set where a mermorphic function has zero or infinite order is discrete within its domain of meromorphicity.