Yoneda embedding of Grp_ C
#
We show that group objects are exactly those whose yoneda presheaf is a presheaf of groups,
by constructing the yoneda embedding Grp_ C ⥤ Cᵒᵖ ⥤ Grp.{v}
and
showing that it is fully faithful and its (essential) image is the representable functors.
def
Grp_Class.ofRepresentableBy
{C : Type u}
[CategoryTheory.Category.{v, u} C]
[CategoryTheory.CartesianMonoidalCategory C]
(X : C)
(F : CategoryTheory.Functor Cᵒᵖ Grp)
(α : (F.comp (CategoryTheory.forget Grp)).RepresentableBy X)
:
If X
represents a presheaf of monoids, then X
is a monoid object.
Equations
- One or more equations did not get rendered due to their size.
Instances For
@[reducible, inline]
abbrev
Hom.group
{C : Type u}
[CategoryTheory.Category.{v, u} C]
[CategoryTheory.CartesianMonoidalCategory C]
{G X : C}
[Grp_Class G]
:
If G
is a group object, then Hom(X, G)
has a group structure.
Equations
- One or more equations did not get rendered due to their size.
Instances For
theorem
Hom.inv_def
{C : Type u}
[CategoryTheory.Category.{v, u} C]
[CategoryTheory.CartesianMonoidalCategory C]
{G X : C}
[Grp_Class G]
(f : X ⟶ G)
:
def
yonedaGrpObj
{C : Type u}
[CategoryTheory.Category.{v, u} C]
[CategoryTheory.CartesianMonoidalCategory C]
(G : C)
[Grp_Class G]
:
If G
is a group object, then Hom(-, G)
is a presheaf of groups.
Equations
- One or more equations did not get rendered due to their size.
Instances For
@[simp]
theorem
yonedaGrpObj_obj_coe
{C : Type u}
[CategoryTheory.Category.{v, u} C]
[CategoryTheory.CartesianMonoidalCategory C]
(G : C)
[Grp_Class G]
(X : Cᵒᵖ)
:
@[simp]
theorem
yonedaGrpObj_map
{C : Type u}
[CategoryTheory.Category.{v, u} C]
[CategoryTheory.CartesianMonoidalCategory C]
(G : C)
[Grp_Class G]
{X✝ Y✝ : Cᵒᵖ}
(φ : X✝ ⟶ Y✝)
:
def
yonedaGrpObjRepresentableBy
{C : Type u}
[CategoryTheory.Category.{v, u} C]
[CategoryTheory.CartesianMonoidalCategory C]
(G : C)
[Grp_Class G]
:
((yonedaGrpObj G).comp (CategoryTheory.forget Grp)).RepresentableBy G
If G
is a monoid object, then Hom(-, G)
as a presheaf of monoids is represented by G
.
Equations
Instances For
theorem
Grp_Class.ofRepresentableBy_yonedaGrpObjRepresentableBy
{C : Type u}
[CategoryTheory.Category.{v, u} C]
[CategoryTheory.CartesianMonoidalCategory C]
(G : C)
[Grp_Class G]
:
def
yonedaGrpObjIsoOfRepresentableBy
{C : Type u}
[CategoryTheory.Category.{v, u} C]
[CategoryTheory.CartesianMonoidalCategory C]
(X : C)
(F : CategoryTheory.Functor Cᵒᵖ Grp)
(α : (F.comp (CategoryTheory.forget Grp)).RepresentableBy X)
:
If X
represents a presheaf of groups F
, then Hom(-, X)
is isomorphic to F
as
a presheaf of groups.
Equations
- yonedaGrpObjIsoOfRepresentableBy X F α = CategoryTheory.NatIso.ofComponents (fun (Y : Cᵒᵖ) => (let __Equiv := α.homEquiv; { toEquiv := __Equiv, map_mul' := ⋯ }).toGrpIso) ⋯
Instances For
@[simp]
theorem
yonedaGrpObjIsoOfRepresentableBy_inv
{C : Type u}
[CategoryTheory.Category.{v, u} C]
[CategoryTheory.CartesianMonoidalCategory C]
(X : C)
(F : CategoryTheory.Functor Cᵒᵖ Grp)
(α : (F.comp (CategoryTheory.forget Grp)).RepresentableBy X)
:
@[simp]
theorem
yonedaGrpObjIsoOfRepresentableBy_hom
{C : Type u}
[CategoryTheory.Category.{v, u} C]
[CategoryTheory.CartesianMonoidalCategory C]
(X : C)
(F : CategoryTheory.Functor Cᵒᵖ Grp)
(α : (F.comp (CategoryTheory.forget Grp)).RepresentableBy X)
:
def
yonedaGrp
{C : Type u}
[CategoryTheory.Category.{v, u} C]
[CategoryTheory.CartesianMonoidalCategory C]
:
The yoneda embedding of Grp_C
into presheaves of groups.
Equations
- One or more equations did not get rendered due to their size.
Instances For
@[simp]
theorem
yonedaGrp_obj
{C : Type u}
[CategoryTheory.Category.{v, u} C]
[CategoryTheory.CartesianMonoidalCategory C]
(G : Grp_ C)
:
@[simp]
theorem
yonedaGrp_map_app
{C : Type u}
[CategoryTheory.Category.{v, u} C]
[CategoryTheory.CartesianMonoidalCategory C]
{G H : Grp_ C}
(ψ : G ⟶ H)
(Y : Cᵒᵖ)
:
theorem
yonedaGrp_naturality
{C : Type u}
[CategoryTheory.Category.{v, u} C]
[CategoryTheory.CartesianMonoidalCategory C]
{G H X Y : C}
[Grp_Class G]
[Grp_Class H]
(α : yonedaGrpObj G ⟶ yonedaGrpObj H)
(f : X ⟶ Y)
(g : Y ⟶ G)
:
theorem
yonedaGrp_naturality_assoc
{C : Type u}
[CategoryTheory.Category.{v, u} C]
[CategoryTheory.CartesianMonoidalCategory C]
{G H X Y : C}
[Grp_Class G]
[Grp_Class H]
(α : yonedaGrpObj G ⟶ yonedaGrpObj H)
(f : X ⟶ Y)
(g : Y ⟶ G)
{Z : C}
(h : H ⟶ Z)
:
def
yonedaGrpFullyFaithful
{C : Type u}
[CategoryTheory.Category.{v, u} C]
[CategoryTheory.CartesianMonoidalCategory C]
:
The yoneda embedding for Grp_C
is fully faithful.
Equations
- One or more equations did not get rendered due to their size.
Instances For
theorem
essImage_yonedaGrp
{C : Type u}
[CategoryTheory.Category.{v, u} C]
[CategoryTheory.CartesianMonoidalCategory C]
:
yonedaGrp.essImage = (fun (x : CategoryTheory.Functor Cᵒᵖ Grp) => x.comp (CategoryTheory.forget Grp)) ⁻¹' setOf CategoryTheory.Functor.IsRepresentable
theorem
Grp_Class.comp_inv
{C : Type u}
[CategoryTheory.Category.{v, u} C]
[CategoryTheory.CartesianMonoidalCategory C]
{G X Y : C}
[Grp_Class G]
(f : X ⟶ Y)
(g : Y ⟶ G)
:
theorem
Grp_Class.comp_inv_assoc
{C : Type u}
[CategoryTheory.Category.{v, u} C]
[CategoryTheory.CartesianMonoidalCategory C]
{G X Y : C}
[Grp_Class G]
(f : X ⟶ Y)
(g : Y ⟶ G)
{Z : C}
(h : G ⟶ Z)
:
theorem
Grp_Class.inv_comp
{C : Type u}
[CategoryTheory.Category.{v, u} C]
[CategoryTheory.CartesianMonoidalCategory C]
{G H X : C}
[Grp_Class G]
[Grp_Class H]
(f : X ⟶ G)
(g : G ⟶ H)
[IsMon_Hom g]
:
theorem
Grp_Class.inv_comp_assoc
{C : Type u}
[CategoryTheory.Category.{v, u} C]
[CategoryTheory.CartesianMonoidalCategory C]
{G H X : C}
[Grp_Class G]
[Grp_Class H]
(f : X ⟶ G)
(g : G ⟶ H)
[IsMon_Hom g]
{Z : C}
(h : H ⟶ Z)
:
theorem
Grp_Class.inv_eq_inv
{C : Type u}
[CategoryTheory.Category.{v, u} C]
[CategoryTheory.CartesianMonoidalCategory C]
{G : C}
[Grp_Class G]
: