Documentation

Mathlib.CategoryTheory.Sites.Subsheaf

Subsheaf of types #

We define the sub(pre)sheaf of a type valued presheaf.

Main results #

The sheafification of a subpresheaf as a subpresheaf. Note that this is a sheaf only when the whole presheaf is a sheaf.

Equations
Instances For

    The lift of a presheaf morphism onto the sheafification subpresheaf.

    Equations
    • One or more equations did not get rendered due to their size.
    Instances For
      @[simp]
      theorem CategoryTheory.Subpresheaf.toRangeSheafify_app_coe {C : Type u} [Category.{v, u} C] (J : GrothendieckTopology C) {F F' : Functor Cᵒᵖ (Type w)} (f : F' F) (X : Cᵒᵖ) (a✝ : F'.obj X) :
      ((toRangeSheafify J f).app X a✝) = ((toRange f).app X a✝)
      def CategoryTheory.Sheaf.image {C : Type u} [Category.{v, u} C] {J : GrothendieckTopology C} {F F' : Sheaf J (Type w)} (f : F F') :

      The image sheaf of a morphism between sheaves, defined to be the sheafification of image_presheaf.

      Equations
      Instances For
        def CategoryTheory.Sheaf.toImage {C : Type u} [Category.{v, u} C] {J : GrothendieckTopology C} {F F' : Sheaf J (Type w)} (f : F F') :

        A morphism factors through the image sheaf.

        Equations
        Instances For
          def CategoryTheory.Sheaf.imageι {C : Type u} [Category.{v, u} C] {J : GrothendieckTopology C} {F F' : Sheaf J (Type w)} (f : F F') :
          image f F'

          The inclusion of the image sheaf to the target.

          Equations
          Instances For
            @[simp]

            The mono factorization given by image_sheaf for a morphism.

            Equations
            Instances For
              noncomputable def CategoryTheory.imageFactorization {C : Type u} [Category.{v, u} C] {J : GrothendieckTopology C} {F F' : Sheaf J (Type (max v u))} (f : F F') :

              The mono factorization given by image_sheaf for a morphism is an image.

              Equations
              • One or more equations did not get rendered due to their size.
              Instances For