Documentation

Mathlib.FieldTheory.Fixed

Fixed field under a group action. #

This is the basis of the Fundamental Theorem of Galois Theory. Given a (finite) group G that acts on a field F, we define FixedPoints.subfield G F, the subfield consisting of elements of F fixed_points by every element of G.

This subfield is then normal and separable, and in addition if G acts faithfully on F then finrank (FixedPoints.subfield G F) F = Fintype.card G.

Main Definitions #

def FixedBy.subfield {M : Type u} [Monoid M] (F : Type v) [Field F] [MulSemiringAction M F] (m : M) :

The subfield of F fixed by the field endomorphism m.

Equations
class IsInvariantSubfield (M : Type u) [Monoid M] {F : Type v} [Field F] [MulSemiringAction M F] (S : Subfield F) :

A typeclass for subrings invariant under a MulSemiringAction.

  • smul_mem (m : M) {x : F} : x Sm x S
Instances
    def FixedPoints.subfield (M : Type u) [Monoid M] (F : Type v) [Field F] [MulSemiringAction M F] :

    The subfield of fixed points by a monoid action.

    Equations
    instance FixedPoints.smulCommClass' (M : Type u) [Monoid M] (F : Type v) [Field F] [MulSemiringAction M F] :
    SMulCommClass (↥(subfield M F)) M F
    @[simp]
    theorem FixedPoints.smul (M : Type u) [Monoid M] (F : Type v) [Field F] [MulSemiringAction M F] (m : M) (x : (subfield M F)) :
    m x = x
    @[simp]
    theorem FixedPoints.smul_polynomial (M : Type u) [Monoid M] (F : Type v) [Field F] [MulSemiringAction M F] (m : M) (p : Polynomial (subfield M F)) :
    m p = p
    theorem FixedPoints.coe_algebraMap (M : Type u) [Monoid M] (F : Type v) [Field F] [MulSemiringAction M F] :
    algebraMap (↥(subfield M F)) F = (subfield M F).subtype
    def FixedPoints.minpoly (G : Type u) [Group G] (F : Type v) [Field F] [MulSemiringAction G F] [Fintype G] (x : F) :

    minpoly G F x is the minimal polynomial of (x : F) over FixedPoints.subfield G F.

    Equations
    theorem FixedPoints.minpoly.monic (G : Type u) [Group G] (F : Type v) [Field F] [MulSemiringAction G F] [Fintype G] (x : F) :
    (minpoly G F x).Monic
    theorem FixedPoints.minpoly.eval₂ (G : Type u) [Group G] (F : Type v) [Field F] [MulSemiringAction G F] [Fintype G] (x : F) :
    theorem FixedPoints.minpoly.eval₂' (G : Type u) [Group G] (F : Type v) [Field F] [MulSemiringAction G F] [Fintype G] (x : F) :
    theorem FixedPoints.minpoly.ne_one (G : Type u) [Group G] (F : Type v) [Field F] [MulSemiringAction G F] [Fintype G] (x : F) :
    minpoly G F x 1
    theorem FixedPoints.minpoly.of_eval₂ (G : Type u) [Group G] (F : Type v) [Field F] [MulSemiringAction G F] [Fintype G] (x : F) (f : Polynomial (subfield G F)) (hf : Polynomial.eval₂ (subfield G F).subtype x f = 0) :
    minpoly G F x f
    theorem FixedPoints.minpoly.irreducible_aux (G : Type u) [Group G] (F : Type v) [Field F] [MulSemiringAction G F] [Fintype G] (x : F) (f g : Polynomial (subfield G F)) (hf : f.Monic) (hg : g.Monic) (hfg : f * g = minpoly G F x) :
    f = 1 g = 1
    theorem FixedPoints.minpoly.irreducible (G : Type u) [Group G] (F : Type v) [Field F] [MulSemiringAction G F] [Fintype G] (x : F) :
    theorem FixedPoints.isIntegral (G : Type u) [Group G] (F : Type v) [Field F] [MulSemiringAction G F] [Finite G] (x : F) :
    IsIntegral (↥(subfield G F)) x
    theorem FixedPoints.minpoly_eq_minpoly (G : Type u) [Group G] (F : Type v) [Field F] [MulSemiringAction G F] [Fintype G] (x : F) :
    minpoly G F x = _root_.minpoly (↥(subfield G F)) x
    theorem FixedPoints.rank_le_card (G : Type u) [Group G] (F : Type v) [Field F] [MulSemiringAction G F] [Fintype G] :
    Module.rank (↥(subfield G F)) F (Fintype.card G)
    instance FixedPoints.normal (G : Type u) [Group G] (F : Type v) [Field F] [MulSemiringAction G F] [Finite G] :
    Normal (↥(subfield G F)) F
    instance FixedPoints.isSeparable (G : Type u) [Group G] (F : Type v) [Field F] [MulSemiringAction G F] [Finite G] :
    theorem cardinalMk_algHom (K : Type u) (V : Type v) (W : Type w) [Field K] [Field V] [Algebra K V] [FiniteDimensional K V] [Field W] [Algebra K W] :
    @[deprecated cardinalMk_algHom (since := "2024-11-10")]
    theorem cardinal_mk_algHom (K : Type u) (V : Type v) (W : Type w) [Field K] [Field V] [Algebra K V] [FiniteDimensional K V] [Field W] [Algebra K W] :

    Alias of cardinalMk_algHom.

    noncomputable instance AlgEquiv.fintype (K : Type u) (V : Type v) [Field K] [Field V] [Algebra K V] [FiniteDimensional K V] :
    Equations
    theorem finrank_algHom (K : Type u) (V : Type v) [Field K] [Field V] [Algebra K V] [FiniteDimensional K V] :
    theorem FixedPoints.finrank_eq_card (G : Type u_1) (F : Type u_2) [Group G] [Field F] [MulSemiringAction G F] [Fintype G] [FaithfulSMul G F] :

    Let F be a field. Let G be a finite group acting faithfully on F. Then [F:FG]=|G|.

    Stacks Tag 09I3 (second part)

    def FixedPoints.toAlgHomEquiv (G : Type u_1) (F : Type u_2) [Group G] [Field F] [MulSemiringAction G F] [Finite G] [FaithfulSMul G F] :
    G (F →ₐ[(subfield G F)] F)

    Bijection between G and algebra endomorphisms of F that fix the fixed points.

    Equations
    def FixedPoints.toAlgAutMulEquiv (G : Type u_1) (F : Type u_2) [Group G] [Field F] [MulSemiringAction G F] [Finite G] [FaithfulSMul G F] :
    G ≃* F ≃ₐ[(subfield G F)] F

    Bijection between G and algebra automorphisms of F that fix the fixed points.

    Equations