Documentation

Mathlib.Topology.Constructible

Constructible sets #

This file defines constructible sets, which are morally sets in a topological space which we can make out of finite unions and intersections of open and closed sets.

Precisely, constructible sets are the boolean subalgebra generated by open retrocompact sets, where a set is retrocompact if its intersection with every compact open set is compact. In a locally noetherian space, all sets are retrocompact, in which case this boolean subalgebra is simply the one generated by the open sets.

Constructible sets are useful because the image of a constructible set under a finitely presented morphism of schemes is a constructible set (and this is not true at the level of varieties).

Main declarations #

retrocompact sets #

def IsRetrocompact {X : Type u_2} [TopologicalSpace X] (s : Set X) :

A retrocompact set is a set whose intersection with every compact open is compact.

Stacks Tag 005A

Equations
Instances For
    @[simp]
    theorem IsRetrocompact.union {X : Type u_2} [TopologicalSpace X] {s t : Set X} (hs : IsRetrocompact s) (ht : IsRetrocompact t) :
    theorem IsRetrocompact.finsetSup {X : Type u_2} [TopologicalSpace X] {ι : Type u_4} {s : Finset ι} {t : ιSet X} (ht : is, IsRetrocompact (t i)) :
    theorem IsRetrocompact.finsetSup' {X : Type u_2} [TopologicalSpace X] {ι : Type u_4} {s : Finset ι} {hs : s.Nonempty} {t : ιSet X} (ht : is, IsRetrocompact (t i)) :
    theorem IsRetrocompact.iUnion {ι : Sort u_1} {X : Type u_2} [TopologicalSpace X] [Finite ι] {f : ιSet X} (hf : ∀ (i : ι), IsRetrocompact (f i)) :
    IsRetrocompact (⋃ (i : ι), f i)
    theorem IsRetrocompact.sUnion {X : Type u_2} [TopologicalSpace X] {S : Set (Set X)} (hS : S.Finite) (hS' : sS, IsRetrocompact s) :
    theorem IsRetrocompact.biUnion {X : Type u_2} [TopologicalSpace X] {ι : Type u_4} {f : ιSet X} {t : Set ι} (ht : t.Finite) (hf : it, IsRetrocompact (f i)) :
    IsRetrocompact (⋃ it, f i)
    theorem IsRetrocompact.inter {X : Type u_2} [TopologicalSpace X] {s t : Set X} [T2Space X] (hs : IsRetrocompact s) (ht : IsRetrocompact t) :
    theorem IsRetrocompact.finsetInf {X : Type u_2} [TopologicalSpace X] [T2Space X] {ι : Type u_4} {s : Finset ι} {t : ιSet X} (ht : is, IsRetrocompact (t i)) :
    theorem IsRetrocompact.finsetInf' {X : Type u_2} [TopologicalSpace X] [T2Space X] {ι : Type u_4} {s : Finset ι} {hs : s.Nonempty} {t : ιSet X} (ht : is, IsRetrocompact (t i)) :
    theorem IsRetrocompact.iInter {ι : Sort u_1} {X : Type u_2} [TopologicalSpace X] [T2Space X] [Finite ι] {f : ιSet X} (hf : ∀ (i : ι), IsRetrocompact (f i)) :
    IsRetrocompact (⋂ (i : ι), f i)
    theorem IsRetrocompact.sInter {X : Type u_2} [TopologicalSpace X] [T2Space X] {S : Set (Set X)} (hS : S.Finite) (hS' : sS, IsRetrocompact s) :
    theorem IsRetrocompact.biInter {X : Type u_2} [TopologicalSpace X] [T2Space X] {ι : Type u_4} {f : ιSet X} {t : Set ι} (ht : t.Finite) (hf : it, IsRetrocompact (f i)) :
    IsRetrocompact (⋂ it, f i)
    theorem IsRetrocompact.inter_isOpen {X : Type u_2} [TopologicalSpace X] {s t : Set X} (hs : IsRetrocompact s) (ht : IsRetrocompact t) (htopen : IsOpen t) :
    theorem IsRetrocompact.isOpen_inter {X : Type u_2} [TopologicalSpace X] {s t : Set X} (hs : IsRetrocompact s) (ht : IsRetrocompact t) (hsopen : IsOpen s) :

    Stacks Tag 005J (Extracted from the proof)

    Stacks Tag 09YE (Extracted from the proof)

    Constructible sets #

    A constructible set is a set that can be written as the finite union/finite intersection/complement of open retrocompact sets.

    In other words, constructible sets form the boolean subalgebra generated by open retrocompact sets.

    Equations
    Instances For
      theorem Topology.IsConstructible.iUnion {ι : Sort u_1} {X : Type u_2} [TopologicalSpace X] [Finite ι] {f : ιSet X} (hf : ∀ (i : ι), IsConstructible (f i)) :
      IsConstructible (⋃ (i : ι), f i)
      theorem Topology.IsConstructible.iInter {ι : Sort u_1} {X : Type u_2} [TopologicalSpace X] [Finite ι] {f : ιSet X} (hf : ∀ (i : ι), IsConstructible (f i)) :
      IsConstructible (⋂ (i : ι), f i)
      theorem Topology.IsConstructible.sUnion {X : Type u_2} [TopologicalSpace X] {S : Set (Set X)} (hS : S.Finite) (hS' : sS, IsConstructible s) :
      theorem Topology.IsConstructible.sInter {X : Type u_2} [TopologicalSpace X] {S : Set (Set X)} (hS : S.Finite) (hS' : sS, IsConstructible s) :
      theorem Topology.IsConstructible.biUnion {X : Type u_2} [TopologicalSpace X] {ι : Type u_4} {f : ιSet X} {t : Set ι} (ht : t.Finite) (hf : it, IsConstructible (f i)) :
      IsConstructible (⋃ it, f i)
      theorem Topology.IsConstructible.biInter {X : Type u_2} [TopologicalSpace X] {ι : Type u_4} {f : ιSet X} {t : Set ι} (ht : t.Finite) (hf : it, IsConstructible (f i)) :
      IsConstructible (⋂ it, f i)
      theorem Topology.IsConstructible.empty_union_induction {X : Type u_2} [TopologicalSpace X] {p : (s : Set X) → IsConstructible sProp} (open_retrocompact : ∀ (U : Set X) (hUopen : IsOpen U) (hUcomp : IsRetrocompact U), p U ) (union : ∀ (s : Set X) (hs : IsConstructible s) (t : Set X) (ht : IsConstructible t), p s hsp t htp (s t) ) (compl : ∀ (s : Set X) (hs : IsConstructible s), p s hsp s ) {s : Set X} (hs : IsConstructible s) :
      p s hs

      An induction principle for constructible sets. If p holds for all open retrocompact sets, and is preserved under union and complement, then p holds for all constructible sets.

      theorem Topology.IsConstructible.preimage {X : Type u_2} {Y : Type u_3} [TopologicalSpace X] [TopologicalSpace Y] {f : XY} {s : Set Y} (hfcont : Continuous f) (hf : ∀ (s : Set Y), IsOpen sIsRetrocompact sIsRetrocompact (f ⁻¹' s)) (hs : IsConstructible s) :

      If f is continuous and is such that preimages of open retrocompact sets are retrocompact, then preimages of constructible sets are constructible.

      Stacks Tag 005I

      Stacks Tag 0069 (Iff form of (2). Note that Stacks doesn't define quasi-separated spaces.)

      theorem Topology.IsConstructible.induction_of_isTopologicalBasis {X : Type u_2} [TopologicalSpace X] [CompactSpace X] {P : (s : Set X) → IsConstructible sProp} [QuasiSeparatedSpace X] {ι : Type u_4} [Nonempty ι] (b : ιSet X) (basis : TopologicalSpace.IsTopologicalBasis (Set.range b)) (isCompact_basis : ∀ (i : ι), IsCompact (b i)) (sdiff : ∀ (i : ι) (s : Set ι) (hs : s.Finite), P (b i \ js, b j) ) (union : ∀ (s : Set X) (hs : IsConstructible s) (t : Set X) (ht : IsConstructible t), P s hsP t htP (s t) ) (s : Set X) (hs : IsConstructible s) :
      P s hs

      Locally constructible sets #

      A set in a topological space is locally constructible, if every point has a neighborhood on which the set is constructible.

      Stacks Tag 005G

      Equations
      Instances For
        theorem Topology.IsLocallyConstructible.finsetInf {X : Type u_2} [TopologicalSpace X] {ι : Type u_4} {s : Finset ι} {t : ιSet X} (ht : is, IsLocallyConstructible (t i)) :
        theorem Topology.IsLocallyConstructible.finsetInf' {X : Type u_2} [TopologicalSpace X] {ι : Type u_4} {s : Finset ι} {hs : s.Nonempty} {t : ιSet X} (ht : is, IsLocallyConstructible (t i)) :
        theorem Topology.IsLocallyConstructible.iInter {ι : Sort u_1} {X : Type u_2} [TopologicalSpace X] [Finite ι] {f : ιSet X} (hf : ∀ (i : ι), IsLocallyConstructible (f i)) :
        IsLocallyConstructible (⋂ (i : ι), f i)
        theorem Topology.IsLocallyConstructible.iUnion {ι : Sort u_1} {X : Type u_2} [TopologicalSpace X] [Finite ι] {f : ιSet X} (hf : ∀ (i : ι), IsLocallyConstructible (f i)) :
        IsLocallyConstructible (⋃ (i : ι), f i)
        theorem Topology.IsLocallyConstructible.biUnion {X : Type u_2} [TopologicalSpace X] {ι : Type u_4} {f : ιSet X} {s : Set ι} (hs : s.Finite) (hf : is, IsLocallyConstructible (f i)) :
        IsLocallyConstructible (⋃ is, f i)

        A variant that requires constructible in the ambient space. This is as strong as the unprimed version only when the open cover consists of retrocompact sets.