Documentation

Toric.Mathlib.Algebra.MonoidAlgebra.Basic

@[simp]
theorem MonoidAlgebra.liftNCAlgHom_single {k : Type u_1} {A : Type u_2} {B : Type u_3} {G : Type u_4} [CommSemiring k] [Semiring A] [Algebra k A] [Semiring B] [Algebra k B] [Monoid G] (f : A →ₐ[k] B) (g : G →* B) (h_comm : ∀ (x : A) (y : G), Commute (f x) (g y)) (a : G) (b : A) :
(liftNCAlgHom f g h_comm) (single a b) = f b * g a
noncomputable def MonoidAlgebra.mapRangeAlgHom {R : Type u_1} {S : Type u_2} {M : Type u_3} [Monoid M] {T : Type u_5} [CommSemiring R] [Semiring S] [Semiring T] [Algebra R S] [Algebra R T] (f : S →ₐ[R] T) :

The algebra homomorphism of monoid algebras induced by a homomorphism of the base algebras.

Equations
Instances For
    @[simp]
    theorem MonoidAlgebra.mapRangeAlgHom_apply {R : Type u_1} {S : Type u_2} {M : Type u_3} [Monoid M] {T : Type u_5} [CommSemiring R] [Semiring S] [Semiring T] [Algebra R S] [Algebra R T] (f : S →ₐ[R] T) (x : MonoidAlgebra S M) (m : M) :
    ((mapRangeAlgHom f) x) m = f (x m)
    @[simp]
    theorem MonoidAlgebra.mapRangeAlgHom_single {R : Type u_1} {S : Type u_2} {M : Type u_3} [Monoid M] {T : Type u_5} [CommSemiring R] [Semiring S] [Semiring T] [Algebra R S] [Algebra R T] (f : S →ₐ[R] T) (a : M) (b : S) :
    (mapRangeAlgHom f) (single a b) = single a (f b)
    noncomputable def MonoidAlgebra.mapRangeAlgEquiv {R : Type u_1} {S : Type u_2} {M : Type u_3} [Monoid M] {T : Type u_5} [CommSemiring R] [Semiring S] [Semiring T] [Algebra R S] [Algebra R T] (f : S ≃ₐ[R] T) :

    The algebra isomorphism of monoid algebras induced by an isomorphism of the base algebras.

    Equations
    • One or more equations did not get rendered due to their size.
    Instances For
      @[simp]
      theorem MonoidAlgebra.mapRangeAlgEquiv_apply {R : Type u_1} {S : Type u_2} {M : Type u_3} [Monoid M] {T : Type u_5} [CommSemiring R] [Semiring S] [Semiring T] [Algebra R S] [Algebra R T] (f : S ≃ₐ[R] T) (a✝ : MonoidAlgebra S M) :
      (mapRangeAlgEquiv f) a✝ = (↑(mapRangeAlgHom f).toRingHom).toFun a✝
      @[reducible, inline]
      noncomputable abbrev MonoidAlgebra.algebraMonoidAlgebra {R : Type u_1} {S : Type u_2} {M : Type u_3} [CommMonoid M] [CommSemiring R] [CommSemiring S] [Algebra R S] :

      If S is an R-algebra, then MonoidAlgebra S σ is a MonoidAlgebra R σ algebra.

      Warning: This produces a diamond for Algebra (MonoidAlgebra R σ) (MonoidAlgebra (MonoidAlgebra S σ) σ). That's why it is not a global instance.

      Equations
      Instances For
        instance MonoidAlgebra.instIsScalarTower_toric {R : Type u_1} {S : Type u_2} {M : Type u_3} [CommMonoid M] [CommSemiring R] [CommSemiring S] [Algebra R S] {T : Type u_4} [CommSemiring T] [Algebra R T] [Algebra S T] [IsScalarTower R S T] :