@[reducible, inline]
noncomputable abbrev
MonoidAlgebra.algebraMonoidAlgebra
{R : Type u_1}
{S : Type u_2}
{M : Type u_3}
[CommMonoid M]
[CommSemiring R]
[CommSemiring S]
[Algebra R S]
:
Algebra (MonoidAlgebra R M) (MonoidAlgebra S M)
If S
is an R
-algebra, then MonoidAlgebra S σ
is a MonoidAlgebra R σ
algebra.
Warning: This produces a diamond for
Algebra (MonoidAlgebra R σ) (MonoidAlgebra (MonoidAlgebra S σ) σ)
. That's why it is not a
global instance.
Equations
Instances For
@[simp]
theorem
MonoidAlgebra.algebraMap_def
{R : Type u_1}
{S : Type u_2}
{M : Type u_3}
[CommMonoid M]
[CommSemiring R]
[CommSemiring S]
[Algebra R S]
:
instance
MonoidAlgebra.instIsScalarTower_toric
{R : Type u_1}
{S : Type u_2}
{M : Type u_3}
[CommMonoid M]
[CommSemiring R]
[CommSemiring S]
[Algebra R S]
{T : Type u_4}
[CommSemiring T]
[Algebra R T]
[Algebra S T]
[IsScalarTower R S T]
:
IsScalarTower R (MonoidAlgebra S M) (MonoidAlgebra T M)