Documentation

Toric.Mathlib.CategoryTheory.Monoidal.CommGrp_

Instances

    If X represents a presheaf of groups, then X is a group object.

    Equations
    Instances For
      Equations
      Instances For

        The yoneda embedding of CommGrp_C into presheaves of groups.

        Equations
        • One or more equations did not get rendered due to their size.
        Instances For
          @[simp]

          The yoneda embedding of CommGrp_C into presheaves of groups.

          Equations
          • One or more equations did not get rendered due to their size.
          Instances For
            @[simp]
            theorem CommGrp_.yonedaCommGrpGrp_map_app {C : Type u} [CategoryTheory.Category.{v, u} C] [CategoryTheory.ChosenFiniteProducts C] {X₁ X₂ : CommGrp_ C} (ψ : X₁ X₂) (Y : (Grp_ C)ᵒᵖ) :
            (yonedaCommGrpGrp.map ψ).app Y = CommGrp.ofHom { toFun := fun (x : Opposite.unop Y X₁.toGrp_) => CategoryTheory.CategoryStruct.comp x ψ, map_one' := , map_mul' := }