class
CommGrp_Class
{C : Type u_1}
[CategoryTheory.Category.{u_2, u_1} C]
[CategoryTheory.ChosenFiniteProducts C]
(X : C)
extends Grp_Class X, IsCommMon X :
Type u_2
- mul_assoc' : CategoryTheory.CategoryStruct.comp (CategoryTheory.MonoidalCategoryStruct.whiskerRight mul X) mul = CategoryTheory.CategoryStruct.comp (CategoryTheory.MonoidalCategoryStruct.associator X X X).hom (CategoryTheory.CategoryStruct.comp (CategoryTheory.MonoidalCategoryStruct.whiskerLeft X mul) mul)
Instances
instance
instCommGrp_ClassXMk'
{C : Type u}
[CategoryTheory.Category.{v, u} C]
[CategoryTheory.ChosenFiniteProducts C]
(X : C)
[CommGrp_Class X]
:
CommGrp_Class (Grp_.mk' X).X
Equations
- instCommGrp_ClassXMk' X = inst✝
def
CommGrp_Class.ofRepresentableBy
{C : Type u}
[CategoryTheory.Category.{v, u} C]
[CategoryTheory.ChosenFiniteProducts C]
(X : C)
(F : CategoryTheory.Functor Cᵒᵖ CommGrp)
(α : (F.comp (CategoryTheory.forget CommGrp)).RepresentableBy X)
:
If X
represents a presheaf of groups, then X
is a group object.
Equations
- CommGrp_Class.ofRepresentableBy X F α = { toGrp_Class := Grp_Class.ofRepresentableBy X (F.comp (CategoryTheory.forget₂ CommGrp Grp)) α, toIsCommMon := ⋯ }
Instances For
def
CommGrp_.mk'
{C : Type u}
[CategoryTheory.Category.{v, u} C]
[CategoryTheory.ChosenFiniteProducts C]
(X : C)
[Grp_Class X]
[IsCommMon X]
:
CommGrp_ C
Equations
- CommGrp_.mk' X = { toGrp_ := Grp_.mk' X, mul_comm := ⋯ }
Instances For
instance
CommGrp_.instCommGrp_ClassX
{C : Type u}
[CategoryTheory.Category.{v, u} C]
[CategoryTheory.ChosenFiniteProducts C]
(X : CommGrp_ C)
:
Equations
- X.instCommGrp_ClassX = { toGrp_Class := X.instGrp_ClassX, toIsCommMon := ⋯ }
def
CommGrp_.yonedaCommGrpGrpObj
{C : Type u}
[CategoryTheory.Category.{v, u} C]
[CategoryTheory.ChosenFiniteProducts C]
(X : CommGrp_ C)
:
The yoneda embedding of CommGrp_C
into presheaves of groups.
Equations
- One or more equations did not get rendered due to their size.
Instances For
@[simp]
theorem
CommGrp_.yonedaCommGrpGrpObj_obj_coe
{C : Type u}
[CategoryTheory.Category.{v, u} C]
[CategoryTheory.ChosenFiniteProducts C]
(X : CommGrp_ C)
(Y : (Grp_ C)ᵒᵖ)
:
@[simp]
theorem
CommGrp_.yonedaCommGrpGrpObj_map
{C : Type u}
[CategoryTheory.Category.{v, u} C]
[CategoryTheory.ChosenFiniteProducts C]
(X : CommGrp_ C)
{Y Z : (Grp_ C)ᵒᵖ}
(f : Y ⟶ Z)
:
X.yonedaCommGrpGrpObj.map f = CommGrp.ofHom
{ toFun := fun (x : Opposite.unop Y ⟶ X.toGrp_) => CategoryTheory.CategoryStruct.comp f.unop x, map_one' := ⋯,
map_mul' := ⋯ }
def
CommGrp_.yonedaCommGrpGrp
{C : Type u}
[CategoryTheory.Category.{v, u} C]
[CategoryTheory.ChosenFiniteProducts C]
:
The yoneda embedding of CommGrp_C
into presheaves of groups.
Equations
- One or more equations did not get rendered due to their size.
Instances For
@[simp]
theorem
CommGrp_.yonedaCommGrpGrp_map_app
{C : Type u}
[CategoryTheory.Category.{v, u} C]
[CategoryTheory.ChosenFiniteProducts C]
{X₁ X₂ : CommGrp_ C}
(ψ : X₁ ⟶ X₂)
(Y : (Grp_ C)ᵒᵖ)
:
(yonedaCommGrpGrp.map ψ).app Y = CommGrp.ofHom
{ toFun := fun (x : Opposite.unop Y ⟶ X₁.toGrp_) => CategoryTheory.CategoryStruct.comp x ψ, map_one' := ⋯,
map_mul' := ⋯ }
@[simp]
theorem
CommGrp_.yonedaCommGrpGrp_obj
{C : Type u}
[CategoryTheory.Category.{v, u} C]
[CategoryTheory.ChosenFiniteProducts C]
(X : CommGrp_ C)
: