Toric varieties #
This file defines a toric variety over a ring R
as a scheme X
with a structure morphism to
Spec R
.
class
AlgebraicGeometry.ToricVariety
(R : CommRingCat)
(σ : Type u)
(X : Scheme)
extends CategoryTheory.OverClass X (AlgebraicGeometry.Spec R), Mod_Class (𝔾ₘ[AlgebraicGeometry.Spec R, σ].asOver (AlgebraicGeometry.Spec R)) (X.asOver (AlgebraicGeometry.Spec R)) :
Type u
A toric variety of dimension n
over a ring R
is a scheme X
equipped with a dense embedding
Tⁿ → X
and an action T × X → X
extending the standard action T × T → T
.
- mul_smul : CategoryTheory.CategoryStruct.comp (CategoryTheory.MonoidalCategoryStruct.whiskerRight Mon_Class.mul (X.asOver (AlgebraicGeometry.Spec R))) smul = CategoryTheory.CategoryStruct.comp (CategoryTheory.MonoidalCategoryStruct.associator (𝔾ₘ[AlgebraicGeometry.Spec R, σ].asOver (AlgebraicGeometry.Spec R)) (𝔾ₘ[AlgebraicGeometry.Spec R, σ].asOver (AlgebraicGeometry.Spec R)) (X.asOver (AlgebraicGeometry.Spec R))).hom (CategoryTheory.CategoryStruct.comp (CategoryTheory.MonoidalCategoryStruct.whiskerLeft (𝔾ₘ[AlgebraicGeometry.Spec R, σ].asOver (AlgebraicGeometry.Spec R)) smul) smul)
The torus embedding.
- isOpenImmersion_torusEmb : IsOpenImmersion torusEmb.left
The torus embedding is an open immersion.
- isDominant_torusEmb : IsDominant torusEmb.left
The torus embedding is dominant.
- torusMul_comp_torusEmb : CategoryTheory.CategoryStruct.comp (CategoryTheory.MonoidalCategoryStruct.tensorHom (CategoryTheory.CategoryStruct.id (𝔾ₘ[Spec R, σ].asOver (Spec R))) torusEmb) Mod_Class.smul = CategoryTheory.CategoryStruct.comp Mon_Class.mul torusEmb
The torus action extends the torus multiplication morphism.
Instances
noncomputable instance
AlgebraicGeometry.instToricVarietySplitTorusSpec
{R : CommRingCat}
(σ : Type u)
:
ToricVariety R σ 𝔾ₘ[Spec R, σ]
Equations
- One or more equations did not get rendered due to their size.