Toric varieties #
This file defines a toric variety over a ring R
as a scheme X
with a structure morphism to
Spec R
.
class
AlgebraicGeometry.ToricVariety
{R : CommRingCat}
(n : ℕ)
(X : CategoryTheory.Over (Spec R))
:
Type u
A toric variety of dimension n
over a ring R
is a scheme X
equipped with a dense embedding
Tⁿ → X
and an action T × X → X
extending the standard action T × T → T
.
The torus embedding
- isOpenImmersion_torusEmb : IsOpenImmersion torusEmb.left
The torus embedding is an open immersion.
- isDominant_torusEmb : IsDominant torusEmb.left
The torus embedding is dominant.
- torusAct : Action_Class (CategoryTheory.Over.mk ((Spec R).SplitTorus (ULift.{u, 0} (Fin n)) ↘ Spec R)) X
The torus action on a toric variety.
- torusMul_comp_torusEmb : CategoryTheory.CategoryStruct.comp (CategoryTheory.MonoidalCategoryStruct.tensorHom (CategoryTheory.CategoryStruct.id (CategoryTheory.Over.mk ((Spec R).SplitTorus (ULift.{u, 0} (Fin n)) ↘ Spec R))) torusEmb) γ = CategoryTheory.CategoryStruct.comp Mon_Class.mul torusEmb
The torus action extends the torus multiplication morphism.
Instances
noncomputable instance
AlgebraicGeometry.instToricVarietyMkSchemeOverSplitTorusSpecULiftFinInferInstanceOverClass
{R : CommRingCat}
(n : ℕ)
:
ToricVariety n (CategoryTheory.Over.mk ((Spec R).SplitTorus (ULift.{u, 0} (Fin n)) ↘ Spec R))
Equations
- One or more equations did not get rendered due to their size.