Toric varieties #
This file defines a toric variety with torus T
over a scheme S
as a scheme X
with an
dominant open embedding T → X
over S
and an action T × X → X
extending the multiplication on
T
.
class
AlgebraicGeometry.ToricVariety
(𝕜 : Type u)
[Field 𝕜]
(X : Scheme)
extends CategoryTheory.OverClass X (AlgebraicGeometry.Spec (CommRingCat.of 𝕜)) :
Type (u + 1)
A toric variety over a scheme S
is a scheme X
equipped with a torus T
, a dense embedding
T → X
and an action T × X → X
extending the standard action T × T → T
.
- torus : Scheme
The torus
- torusIsOver : (torus 𝕜 X).Over (Spec (CommRingCat.of 𝕜))
- grp_ClassTorus : Grp_Class ((torus 𝕜 X).asOver (Spec (CommRingCat.of 𝕜)))
- mod_ClassTorus : Mod_Class ((torus 𝕜 X).asOver (Spec (CommRingCat.of 𝕜))) (X.asOver (Spec (CommRingCat.of 𝕜)))
- torusIsTorusOver : Scheme.IsTorusOver 𝕜 (torus 𝕜 X)
The torus embedding
- isOver_torusEmb : Scheme.Hom.IsOver (torusEmb 𝕜 X) (Spec (CommRingCat.of 𝕜))
- isOpenImmersion_torusEmb : IsOpenImmersion (torusEmb 𝕜 X)
The torus embedding is an open immersion.
- isDominant_torusEmb : IsDominant (torusEmb 𝕜 X)
The torus embedding is dominant.
- torusMul_comp_torusEmb : CategoryTheory.CategoryStruct.comp (CategoryTheory.MonoidalCategoryStruct.tensorHom (CategoryTheory.CategoryStruct.id ((torus 𝕜 X).asOver (Spec (CommRingCat.of 𝕜)))) (Scheme.Hom.asOver (torusEmb 𝕜 X) (Spec (CommRingCat.of 𝕜)))) Mod_Class.smul = CategoryTheory.CategoryStruct.comp Mon_Class.mul (Scheme.Hom.asOver (torusEmb 𝕜 X) (Spec (CommRingCat.of 𝕜)))
The torus action extends the torus multiplication.
Instances
noncomputable instance
AlgebraicGeometry.ToricVariety.inst
{𝕜 : Type u}
[Field 𝕜]
{T : Scheme}
[T.Over (Spec (CommRingCat.of 𝕜))]
[Grp_Class (T.asOver (Spec (CommRingCat.of 𝕜)))]
[Scheme.IsTorusOver 𝕜 T]
:
ToricVariety 𝕜 T
A torus T
is a toric variety over itself.
Equations
- One or more equations did not get rendered due to their size.
@[simp]
theorem
AlgebraicGeometry.ToricVariety.torusEmb_self
{𝕜 : Type u}
[Field 𝕜]
(T : Scheme)
[T.Over (Spec (CommRingCat.of 𝕜))]
[Grp_Class (T.asOver (Spec (CommRingCat.of 𝕜)))]
[Scheme.IsTorusOver 𝕜 T]
: