@[reducible, inline]
abbrev
AlgebraicGeometry.Scheme.specCommMonAlgPullbackObjXIso
{R S : CommRingCat}
(M : CommMonCat)
(f : R ⟶ S)
(Sf : Spec S ⟶ Spec R)
(H : Sf = Spec.map f)
:
(((commMonAlg ↑R).op.comp ((bialgSpec R).comp (CategoryTheory.Over.pullback Sf).mapMon)).obj (Opposite.op M)).X ≅ (((commMonAlg ↑S).op.comp (bialgSpec S)).obj (Opposite.op M)).X
Equations
Instances For
def
AlgebraicGeometry.Scheme.specCommMonAlgPullback
{R S : CommRingCat}
(f : R ⟶ S)
(Sf : Spec S ⟶ Spec R)
(H : Sf = Spec.map f)
:
(commMonAlg ↑R).op.comp ((bialgSpec R).comp (CategoryTheory.Over.pullback Sf).mapMon) ≅ (commMonAlg ↑S).op.comp (bialgSpec S)
The spectrum of a commutative algebra functor commutes with base change.
Equations
- One or more equations did not get rendered due to their size.
Instances For
@[simp]
theorem
AlgebraicGeometry.Scheme.specCommMonAlgPullback_inv_app_hom_left_fst
{R S : CommRingCat}
(f : R ⟶ S)
(Sf : Spec S ⟶ Spec R)
(H : Sf = Spec.map f)
(M : CommMonCatᵒᵖ)
:
CategoryTheory.CategoryStruct.comp ((specCommMonAlgPullback f Sf H).inv.app M).hom.left
(CategoryTheory.Limits.pullback.fst
(Spec.map (CommRingCat.ofHom (algebraMap (↑R) (MonoidAlgebra ↑R ↑(Opposite.unop M))))) Sf) = Spec.map (CommRingCat.ofHom (MonoidAlgebra.mapRangeRingHom (↑(Opposite.unop M)) (CommRingCat.Hom.hom f)))
@[simp]
theorem
AlgebraicGeometry.Scheme.specCommMonAlgPullback_inv_app_hom_left_fst_assoc
{R S : CommRingCat}
(f : R ⟶ S)
(Sf : Spec S ⟶ Spec R)
(H : Sf = Spec.map f)
(M : CommMonCatᵒᵖ)
{Z : Scheme}
(h : Spec { carrier := MonoidAlgebra ↑R ↑(Opposite.unop M), commRing := MonoidAlgebra.commRing } ⟶ Z)
:
CategoryTheory.CategoryStruct.comp ((specCommMonAlgPullback f Sf H).inv.app M).hom.left
(CategoryTheory.CategoryStruct.comp
(CategoryTheory.Limits.pullback.fst
(Spec.map (CommRingCat.ofHom (algebraMap (↑R) (MonoidAlgebra ↑R ↑(Opposite.unop M))))) Sf)
h) = CategoryTheory.CategoryStruct.comp
(Spec.map (CommRingCat.ofHom (MonoidAlgebra.mapRangeRingHom (↑(Opposite.unop M)) (CommRingCat.Hom.hom f)))) h
@[simp]
theorem
AlgebraicGeometry.Scheme.specCommMonAlgPullback_inv_app_hom_left_snd
{R S : CommRingCat}
(f : R ⟶ S)
(Sf : Spec S ⟶ Spec R)
(H : Sf = Spec.map f)
(M : CommMonCatᵒᵖ)
:
CategoryTheory.CategoryStruct.comp ((specCommMonAlgPullback f Sf H).inv.app M).hom.left
(CategoryTheory.Limits.pullback.snd
(Spec.map (CommRingCat.ofHom (algebraMap (↑R) (MonoidAlgebra ↑R ↑(Opposite.unop M))))) Sf) = Spec.map
(CommRingCat.ofHom
(algebraMap ↑S
↑(Opposite.unop ((commBialgCatEquivComonCommAlgCat ↑S).functor.leftOp.obj ((commMonAlg ↑S).op.obj M)).X)))
@[simp]
theorem
AlgebraicGeometry.Scheme.specCommMonAlgPullback_inv_app_hom_left_snd_assoc
{R S : CommRingCat}
(f : R ⟶ S)
(Sf : Spec S ⟶ Spec R)
(H : Sf = Spec.map f)
(M : CommMonCatᵒᵖ)
{Z : Scheme}
(h : Spec S ⟶ Z)
:
CategoryTheory.CategoryStruct.comp ((specCommMonAlgPullback f Sf H).inv.app M).hom.left
(CategoryTheory.CategoryStruct.comp
(CategoryTheory.Limits.pullback.snd
(Spec.map (CommRingCat.ofHom (algebraMap (↑R) (MonoidAlgebra ↑R ↑(Opposite.unop M))))) Sf)
h) = CategoryTheory.CategoryStruct.comp
(Spec.map
(CommRingCat.ofHom
(algebraMap ↑S
↑(Opposite.unop ((commBialgCatEquivComonCommAlgCat ↑S).functor.leftOp.obj ((commMonAlg ↑S).op.obj M)).X))))
h
def
AlgebraicGeometry.Scheme.specCommGrpAlgPullback
{R S : CommRingCat}
(f : R ⟶ S)
(Sf : Spec S ⟶ Spec R)
(H : Sf = Spec.map f)
:
(commGrpAlg ↑R).op.comp ((hopfSpec R).comp (CategoryTheory.Over.pullback Sf).mapGrp) ≅ (commGrpAlg ↑S).op.comp (hopfSpec S)
The spectrum of a group algebra functor commutes with base change.
Equations
- One or more equations did not get rendered due to their size.