Documentation

Toric.Mathlib.RingTheory.Bialgebra.MonoidAlgebra

theorem MonoidAlgebra.bialgHom_ext {R : Type u_1} {A : Type u_3} {M : Type u_7} [CommSemiring R] [Semiring A] [Bialgebra R A] [Monoid M] φ₁ φ₂ : MonoidAlgebra R M →ₐc[R] A (h : ∀ (x : M), φ₁ (single x 1) = φ₂ (single x 1)) :
φ₁ = φ₂

A R-algebra homomorphism from MonoidAlgebra R M is uniquely defined by its values on the functions single a 1.

theorem MonoidAlgebra.bialgHom_ext' {R : Type u_1} {A : Type u_3} {M : Type u_7} [CommSemiring R] [Semiring A] [Bialgebra R A] [Monoid M] φ₁ φ₂ : MonoidAlgebra R M →ₐc[R] A (h : (↑φ₁).comp (of R M) = (↑φ₂).comp (of R M)) :
φ₁ = φ₂

See note [partially-applied ext lemmas].

theorem MonoidAlgebra.bialgHom_ext'_iff {R : Type u_1} {A : Type u_3} {M : Type u_7} [CommSemiring R] [Semiring A] [Bialgebra R A] [Monoid M] {φ₁ φ₂ : MonoidAlgebra R M →ₐc[R] A} :
φ₁ = φ₂ (↑φ₁).comp (of R M) = (↑φ₂).comp (of R M)
@[simp]
theorem MonoidAlgebra.counit_domCongr {R : Type u_1} {A : Type u_3} {M : Type u_7} {N : Type u_8} [CommSemiring R] [Semiring A] [Bialgebra R A] [Monoid M] [Monoid N] (e : M ≃* N) (x : MonoidAlgebra A M) :
def MonoidAlgebra.domCongrBialgHom (R : Type u_1) (A : Type u_3) {M : Type u_7} {N : Type u_8} [CommSemiring R] [Semiring A] [Bialgebra R A] [Monoid M] [Monoid N] (e : M ≃* N) :

Isomorphic monoids have isomorphic monoid algebras.

Equations
Instances For
    @[simp]
    theorem MonoidAlgebra.domCongrBialgHom_symm_apply_toFun (R : Type u_1) (A : Type u_3) {M : Type u_7} {N : Type u_8} [CommSemiring R] [Semiring A] [Bialgebra R A] [Monoid M] [Monoid N] (e : M ≃* N) (a✝ : MonoidAlgebra A N) (a : M) :
    ((domCongrBialgHom R A e).symm a✝) a = a✝ (e a)
    @[simp]
    theorem MonoidAlgebra.domCongrBialgHom_apply_toFun (R : Type u_1) (A : Type u_3) {M : Type u_7} {N : Type u_8} [CommSemiring R] [Semiring A] [Bialgebra R A] [Monoid M] [Monoid N] (e : M ≃* N) (a✝ : MonoidAlgebra A M) (a : N) :
    ((domCongrBialgHom R A e) a✝) a = a✝ (e.symm a)
    @[simp]
    theorem MonoidAlgebra.domCongrBialgHom_symm_apply_support_val (R : Type u_1) (A : Type u_3) {M : Type u_7} {N : Type u_8} [CommSemiring R] [Semiring A] [Bialgebra R A] [Monoid M] [Monoid N] (e : M ≃* N) (a✝ : MonoidAlgebra A N) :
    @[simp]
    theorem MonoidAlgebra.domCongrBialgHom_apply_support_val (R : Type u_1) (A : Type u_3) {M : Type u_7} {N : Type u_8} [CommSemiring R] [Semiring A] [Bialgebra R A] [Monoid M] [Monoid N] (e : M ≃* N) (a✝ : MonoidAlgebra A M) :
    ((domCongrBialgHom R A e) a✝).support.val = Multiset.map (⇑e) a✝.support.val

    The trivial monoid algebra is isomorphic to the base ring.

    Equations
    • One or more equations did not get rendered due to their size.
    Instances For
      theorem MonoidAlgebra.isGroupLikeElem_of {R : Type u_1} {A : Type u_3} {G : Type u_4} [CommSemiring R] [Semiring A] [Bialgebra R A] [Group G] (g : G) :
      IsGroupLikeElem R ((of A G) g)
      @[simp]
      theorem MonoidAlgebra.isGroupLikeElem_single_one {R : Type u_1} {A : Type u_3} {G : Type u_4} [CommSemiring R] [Semiring A] [Bialgebra R A] [Group G] (g : G) :
      @[simp]

      A group algebra is spanned by its group-like elements.

      def MonoidAlgebra.liftMulEquiv (R : Type u_1) (A : Type u_3) (M : Type u_7) [CommSemiring R] [CommSemiring A] [Algebra R A] [Monoid M] :

      MonoidAlgebra.lift as a MulEquiv.

      Equations
      Instances For
        @[simp]
        theorem MonoidAlgebra.convMul_algHom_single {R : Type u_1} {A : Type u_3} {M : Type u_7} [CommSemiring R] [CommSemiring A] [Algebra R A] [Monoid M] (f g : MonoidAlgebra R M →ₐ[R] A) (x : M) :
        (f * g) (single x 1) = f (single x 1) * g (single x 1)
        @[simp]
        theorem MonoidAlgebra.convMul_bialgHom_single {R : Type u_1} {A : Type u_3} {M : Type u_7} [CommSemiring R] [CommSemiring A] [Bialgebra R A] [CommMonoid M] (f g : MonoidAlgebra R M →ₐc[R] A) (x : M) :
        (f * g) (single x 1) = f (single x 1) * g (single x 1)
        @[simp]
        theorem MonoidAlgebra.mapDomainBialgHom_mul {R : Type u_1} {M : Type u_7} {N : Type u_8} [CommSemiring R] [CommMonoid M] [CommMonoid N] (f g : M →* N) :
        @[simp]
        noncomputable def MonoidAlgebra.mapDomainOfBialgHom {R : Type u_1} {G : Type u_4} {H : Type u_5} [CommRing R] [IsDomain R] [Group G] [Group H] (f : MonoidAlgebra R G →ₐc[R] MonoidAlgebra R H) :
        G →* H

        A bialgebra homomorphism R[G] → R[H] between group algebras over a domain R comes from a group hom G → H.

        See MonoidAlgebra.mapDomainBialgHom for the forward map.

        Equations
        Instances For
          theorem MonoidAlgebra.single_mapDomainOfBialgHom {R : Type u_1} {G : Type u_4} {H : Type u_5} [CommRing R] [IsDomain R] [Group G] [Group H] (f : MonoidAlgebra R G →ₐc[R] MonoidAlgebra R H) (g : G) (r : R) :
          @[simp]
          noncomputable def MonoidAlgebra.mapDomainBialgHomEquiv {R : Type u_1} {G : Type u_4} {H : Type u_5} [CommRing R] [IsDomain R] [Group G] [Group H] :

          The equivalence between group homs G → H and bialgebra homs R[G] → R[H] of group algebras over a domain.

          Equations
          Instances For
            @[simp]
            noncomputable def MonoidAlgebra.mapDomainBialgHomMulEquiv {R : Type u_1} {G : Type u_4} {H : Type u_5} [CommRing R] [IsDomain R] [CommGroup G] [CommGroup H] :

            The group isomorphism between group homs G → H and bialgebra homs R[G] → R[H] of group algebras over a domain.

            Equations
            Instances For
              theorem AddMonoidAlgebra.bialgHom_ext {R : Type u_1} {A : Type u_3} {M : Type u_7} [CommSemiring R] [Semiring A] [Bialgebra R A] [AddMonoid M] φ₁ φ₂ : AddMonoidAlgebra R M →ₐc[R] A (h : ∀ (x : M), φ₁ (single x 1) = φ₂ (single x 1)) :
              φ₁ = φ₂

              A R-algebra homomorphism from R[M] is uniquely defined by its values on the functions single a 1.

              theorem AddMonoidAlgebra.bialgHom_ext' {R : Type u_1} {A : Type u_3} {M : Type u_7} [CommSemiring R] [Semiring A] [Bialgebra R A] [AddMonoid M] φ₁ φ₂ : AddMonoidAlgebra R M →ₐc[R] A (h : (↑φ₁).comp (of R M) = (↑φ₂).comp (of R M)) :
              φ₁ = φ₂

              See note [partially-applied ext lemmas].

              theorem AddMonoidAlgebra.bialgHom_ext'_iff {R : Type u_1} {A : Type u_3} {M : Type u_7} [CommSemiring R] [Semiring A] [Bialgebra R A] [AddMonoid M] {φ₁ φ₂ : AddMonoidAlgebra R M →ₐc[R] A} :
              φ₁ = φ₂ (↑φ₁).comp (of R M) = (↑φ₂).comp (of R M)
              @[simp]
              theorem AddMonoidAlgebra.counit_domCongr {R : Type u_1} {A : Type u_3} {M : Type u_7} {N : Type u_8} [CommSemiring R] [Semiring A] [Bialgebra R A] [AddMonoid M] [AddMonoid N] (e : M ≃+ N) (x : AddMonoidAlgebra A M) :
              def AddMonoidAlgebra.domCongrBialgHom (R : Type u_1) (A : Type u_3) {M : Type u_7} {N : Type u_8} [CommSemiring R] [Semiring A] [Bialgebra R A] [AddMonoid M] [AddMonoid N] (e : M ≃+ N) :

              Isomorphic monoids have isomorphic monoid algebras.

              Equations
              Instances For
                @[simp]
                theorem AddMonoidAlgebra.domCongrBialgHom_apply_toFun (R : Type u_1) (A : Type u_3) {M : Type u_7} {N : Type u_8} [CommSemiring R] [Semiring A] [Bialgebra R A] [AddMonoid M] [AddMonoid N] (e : M ≃+ N) (a✝ : AddMonoidAlgebra A M) (a : N) :
                ((domCongrBialgHom R A e) a✝) a = a✝ (e.symm a)
                @[simp]
                theorem AddMonoidAlgebra.domCongrBialgHom_symm_apply_toFun (R : Type u_1) (A : Type u_3) {M : Type u_7} {N : Type u_8} [CommSemiring R] [Semiring A] [Bialgebra R A] [AddMonoid M] [AddMonoid N] (e : M ≃+ N) (a✝ : AddMonoidAlgebra A N) (a : M) :
                ((domCongrBialgHom R A e).symm a✝) a = a✝ (e a)
                @[simp]
                theorem AddMonoidAlgebra.domCongrBialgHom_symm_apply_support_val (R : Type u_1) (A : Type u_3) {M : Type u_7} {N : Type u_8} [CommSemiring R] [Semiring A] [Bialgebra R A] [AddMonoid M] [AddMonoid N] (e : M ≃+ N) (a✝ : AddMonoidAlgebra A N) :
                @[simp]
                theorem AddMonoidAlgebra.domCongrBialgHom_apply_support_val (R : Type u_1) (A : Type u_3) {M : Type u_7} {N : Type u_8} [CommSemiring R] [Semiring A] [Bialgebra R A] [AddMonoid M] [AddMonoid N] (e : M ≃+ N) (a✝ : AddMonoidAlgebra A M) :
                ((domCongrBialgHom R A e) a✝).support.val = Multiset.map (⇑e) a✝.support.val

                The trivial monoid algebra is isomorphic to the base ring.

                Equations
                • One or more equations did not get rendered due to their size.
                Instances For
                  theorem AddMonoidAlgebra.isGroupLikeElem_of {R : Type u_1} {A : Type u_3} {G : Type u_4} [CommSemiring R] [Semiring A] [Bialgebra R A] [AddGroup G] (g : G) :
                  IsGroupLikeElem R ((of A G) g)
                  @[simp]
                  theorem AddMonoidAlgebra.isGroupLikeElem_single {R : Type u_1} {A : Type u_3} {G : Type u_4} [CommSemiring R] [Semiring A] [Bialgebra R A] [AddGroup G] (g : G) :
                  @[simp]

                  A group algebra is spanned by its group-like elements.

                  @[simp]
                  theorem AddMonoidAlgebra.convMul_algHom_single {R : Type u_1} {A : Type u_3} {M : Type u_7} [CommSemiring R] [CommSemiring A] [Algebra R A] [AddMonoid M] (f g : AddMonoidAlgebra R M →ₐ[R] A) (x : M) :
                  (f * g) (single x 1) = f (single x 1) * g (single x 1)
                  @[simp]
                  theorem AddMonoidAlgebra.convMul_bialgHom_single {R : Type u_1} {A : Type u_3} {M : Type u_7} [CommSemiring R] [CommSemiring A] [Bialgebra R A] [AddCommMonoid M] (f g : AddMonoidAlgebra R M →ₐc[R] A) (x : M) :
                  (f * g) (single x 1) = f (single x 1) * g (single x 1)
                  noncomputable def AddMonoidAlgebra.mapDomainOfBialgHom {R : Type u_1} {G : Type u_4} {H : Type u_5} [CommRing R] [IsDomain R] [AddGroup G] [AddGroup H] (f : AddMonoidAlgebra R G →ₐc[R] AddMonoidAlgebra R H) :
                  G →+ H

                  A bialgebra homomorphism R[G] → R[H] between group algebras over a domain R comes from a group hom G → H.

                  See AddMonoidAlgebra.mapDomainBialgHom for the forward map.

                  Equations
                  Instances For
                    theorem AddMonoidAlgebra.single_mapDomainOfBialgHom {R : Type u_1} {G : Type u_4} {H : Type u_5} [CommRing R] [IsDomain R] [AddGroup G] [AddGroup H] (f : AddMonoidAlgebra R G →ₐc[R] AddMonoidAlgebra R H) (g : G) (r : R) :
                    noncomputable def AddMonoidAlgebra.mapDomainBialgHomEquiv {R : Type u_1} {G : Type u_4} {H : Type u_5} [CommRing R] [IsDomain R] [AddGroup G] [AddGroup H] :

                    The equivalence between group homs G → H and bialgebra homs R[G] → R[H] of group algebras over a domain.

                    Equations
                    Instances For

                      The group isomorphism between group homs G → H and bialgebra homs R[G] → R[H] of group algebras over a domain.

                      Equations
                      Instances For
                        noncomputable def MonoidAlgebra.liftGroupLikeAlgHom (R : Type u_1) (A : Type u_3) [CommSemiring R] [Semiring A] [Bialgebra R A] :

                        The R-algebra map from the group algebra on the group-like elements of A to A.

                        Equations
                        Instances For
                          @[simp]
                          theorem MonoidAlgebra.liftGroupLikeAlgHom_apply (R : Type u_1) (A : Type u_3) [CommSemiring R] [Semiring A] [Bialgebra R A] (a✝ : MonoidAlgebra R (GroupLike R A)) :
                          (liftGroupLikeAlgHom R A) a✝ = (liftNC (algebraMap R A) fun (g : GroupLike R A) => g) a✝
                          noncomputable def MonoidAlgebra.liftGroupLikeBialgHom (R : Type u_1) (A : Type u_3) [CommSemiring R] [Semiring A] [Bialgebra R A] :

                          The R-bialgebra map from the group algebra on the group-like elements of A to A.

                          Equations
                          Instances For
                            @[simp]
                            theorem MonoidAlgebra.liftGroupLikeBialgHom_apply (R : Type u_1) (A : Type u_3) [CommSemiring R] [Semiring A] [Bialgebra R A] (a✝ : MonoidAlgebra R (GroupLike R A)) :
                            (liftGroupLikeBialgHom R A) a✝ = (liftNC (algebraMap R A) fun (g : GroupLike R A) => g) a✝