Documentation

Toric.GroupScheme.Torus

The standard algebraic torus #

This file defines the standard algebraic torus over Spec R as Spec (R ⊗ ℤ[Fₙ]).

Instances

    Every split torus that's locally of finite type is isomorphic to 𝔾ₘⁿ for some n.

    Instances
      theorem AlgebraicGeometry.Scheme.IsTorusOver.of_iso {k : Type u} [Field k] {G H : Scheme} [G.Over (Spec { carrier := k, commRing := Field.toEuclideanDomain.toCommRing })] [H.Over (Spec { carrier := k, commRing := Field.toEuclideanDomain.toCommRing })] [CategoryTheory.GrpObj (G.asOver (Spec { carrier := k, commRing := Field.toEuclideanDomain.toCommRing }))] [CategoryTheory.GrpObj (H.asOver (Spec { carrier := k, commRing := Field.toEuclideanDomain.toCommRing }))] (e : G H) [Hom.IsOver e.hom (Spec { carrier := k, commRing := Field.toEuclideanDomain.toCommRing })] [CategoryTheory.IsMonHom (Hom.asOver e.hom (Spec { carrier := k, commRing := Field.toEuclideanDomain.toCommRing }))] [IsTorusOver k H] :
      @[reducible, inline]

      The (split) algebraic torus over S indexed by σ.

      Equations
      Instances For

        The (split) algebraic torus over S indexed by σ.

        Equations
        • One or more equations did not get rendered due to their size.
        Instances For

          The multiplicative group over S.

          Equations
          • One or more equations did not get rendered due to their size.
          Instances For

            Every split torus that's locally of finite type is isomorphic to 𝔾ₘⁿ for some n.

            @[reducible, inline]

            The split torus with dimensions σ over Spec R is isomorphic to Spec R[ℤ^σ].

            Equations
            Instances For