The standard algebraic torus #
This file defines the standard algebraic torus over Spec R as Spec (R ⊗ ℤ[Fₙ]).
instance
AlgebraicGeometry.Scheme.instIsMonHomOverHomAsOverOfAsOver_toric
{S M N : Scheme}
[M.Over S]
[N.Over S]
[CategoryTheory.MonObj (M.asOver S)]
[CategoryTheory.MonObj (N.asOver S)]
(e : M ≅ N)
[Hom.IsOver e.hom S]
[CategoryTheory.IsMonHom (Hom.asOver e.hom S)]
:
class
AlgebraicGeometry.Scheme.IsSplitTorusOver
(G S : Scheme)
[G.Over S]
[CategoryTheory.GrpObj (G.asOver S)]
:
- existsIso : ∃ (A : Type u) (x : AddCommGroup A) (_ : Module.Free ℤ A) (e : G ≅ S.Diag A) (x_2 : Hom.IsOver e.hom S), CategoryTheory.IsMonHom (Hom.asOver e.hom S)
Instances
theorem
AlgebraicGeometry.Scheme.isSplitTorusOver_iff
(G S : Scheme)
[G.Over S]
[CategoryTheory.GrpObj (G.asOver S)]
:
G.IsSplitTorusOver S ↔ ∃ (A : Type u) (x : AddCommGroup A) (_ : Module.Free ℤ A) (e : G ≅ S.Diag A) (x_2 : Hom.IsOver e.hom S),
CategoryTheory.IsMonHom (Hom.asOver e.hom S)
instance
AlgebraicGeometry.Scheme.diag_isSplitTorusOver
{S : Scheme}
{A : Type u}
[AddCommGroup A]
[Module.Free ℤ A]
:
(S.Diag A).IsSplitTorusOver S
theorem
AlgebraicGeometry.Scheme.IsSplitTorusOver.of_isIso
{G H S : Scheme}
[G.Over S]
[H.Over S]
[CategoryTheory.GrpObj (G.asOver S)]
[CategoryTheory.GrpObj (H.asOver S)]
[H.IsSplitTorusOver S]
(f : G ⟶ H)
[CategoryTheory.IsIso f]
[Hom.IsOver f S]
[CategoryTheory.IsMonHom (Hom.asOver f S)]
:
G.IsSplitTorusOver S
theorem
AlgebraicGeometry.Scheme.IsSplitTorusOver.of_isIso'
{G H S : Scheme}
[G.Over S]
[H.Over S]
[CategoryTheory.GrpObj (G.asOver S)]
[CategoryTheory.GrpObj (H.asOver S)]
[G.IsSplitTorusOver S]
(f : G ⟶ H)
[CategoryTheory.IsIso f]
[Hom.IsOver f S]
[CategoryTheory.IsMonHom (Hom.asOver f S)]
:
H.IsSplitTorusOver S
theorem
AlgebraicGeometry.Scheme.IsSplitTorusOver.of_iso
{G H S : Scheme}
[G.Over S]
[H.Over S]
[CategoryTheory.GrpObj (G.asOver S)]
[CategoryTheory.GrpObj (H.asOver S)]
[H.IsSplitTorusOver S]
(e : G ≅ H)
[Hom.IsOver e.hom S]
[CategoryTheory.IsMonHom (Hom.asOver e.hom S)]
:
G.IsSplitTorusOver S
theorem
AlgebraicGeometry.Scheme.exists_iso_diag_finite_of_isSplitTorusOver_locallyOfFiniteType
(G S : Scheme)
[G.Over S]
[CategoryTheory.GrpObj (G.asOver S)]
[G.IsSplitTorusOver S]
[hG : LocallyOfFiniteType (G ↘ S)]
[Nonempty ↥S]
:
∃ (ι : Type u) (_ : Finite ι) (e : G ≅ S.Diag (AddMonoidAlgebra ℤ ι)) (x : Hom.IsOver e.hom S),
CategoryTheory.IsMonHom (Hom.asOver e.hom S)
Every split torus that's locally of finite type is isomorphic to 𝔾ₘⁿ for some n.
class
AlgebraicGeometry.Scheme.IsTorusOver
(k : Type u)
[Field k]
(G : Scheme)
[G.Over (Spec { carrier := k, commRing := Field.toEuclideanDomain.toCommRing })]
[CategoryTheory.GrpObj (G.asOver (Spec { carrier := k, commRing := Field.toEuclideanDomain.toCommRing }))]
:
- existsSplit : ∃ (L : Type u) (x : Field L) (x_1 : Algebra k L) (_ : Algebra.IsSeparable k L), (CategoryTheory.Limits.pullback (G ↘ Spec { carrier := k, commRing := Field.toEuclideanDomain.toCommRing }) (Spec.map (CommRingCat.ofHom (algebraMap k L)))).IsSplitTorusOver (Spec { carrier := L, commRing := Field.toEuclideanDomain.toCommRing })
Instances
theorem
AlgebraicGeometry.Scheme.isTorusOver_iff
(k : Type u)
[Field k]
(G : Scheme)
[G.Over (Spec { carrier := k, commRing := Field.toEuclideanDomain.toCommRing })]
[CategoryTheory.GrpObj (G.asOver (Spec { carrier := k, commRing := Field.toEuclideanDomain.toCommRing }))]
:
IsTorusOver k G ↔ ∃ (L : Type u) (x : Field L) (x_1 : Algebra k L) (_ : Algebra.IsSeparable k L),
(CategoryTheory.Limits.pullback (G ↘ Spec { carrier := k, commRing := Field.toEuclideanDomain.toCommRing })
(Spec.map (CommRingCat.ofHom (algebraMap k L)))).IsSplitTorusOver
(Spec { carrier := L, commRing := Field.toEuclideanDomain.toCommRing })
instance
AlgebraicGeometry.Scheme.instIsTorusOverOfIsSplitTorusOverSpecOf
{k : Type u}
[Field k]
{G : Scheme}
[G.Over (Spec { carrier := k, commRing := Field.toEuclideanDomain.toCommRing })]
[CategoryTheory.GrpObj (G.asOver (Spec { carrier := k, commRing := Field.toEuclideanDomain.toCommRing }))]
[G.IsSplitTorusOver (Spec { carrier := k, commRing := Field.toEuclideanDomain.toCommRing })]
:
IsTorusOver k G
theorem
AlgebraicGeometry.Scheme.IsTorusOver.of_iso
{k : Type u}
[Field k]
{G H : Scheme}
[G.Over (Spec { carrier := k, commRing := Field.toEuclideanDomain.toCommRing })]
[H.Over (Spec { carrier := k, commRing := Field.toEuclideanDomain.toCommRing })]
[CategoryTheory.GrpObj (G.asOver (Spec { carrier := k, commRing := Field.toEuclideanDomain.toCommRing }))]
[CategoryTheory.GrpObj (H.asOver (Spec { carrier := k, commRing := Field.toEuclideanDomain.toCommRing }))]
(e : G ≅ H)
[Hom.IsOver e.hom (Spec { carrier := k, commRing := Field.toEuclideanDomain.toCommRing })]
[CategoryTheory.IsMonHom (Hom.asOver e.hom (Spec { carrier := k, commRing := Field.toEuclideanDomain.toCommRing }))]
[IsTorusOver k H]
:
IsTorusOver k G
theorem
AlgebraicGeometry.Scheme.IsTorusOver.of_isIso
{k : Type u}
[Field k]
{G H : Scheme}
[G.Over (Spec { carrier := k, commRing := Field.toEuclideanDomain.toCommRing })]
[H.Over (Spec { carrier := k, commRing := Field.toEuclideanDomain.toCommRing })]
[CategoryTheory.GrpObj (G.asOver (Spec { carrier := k, commRing := Field.toEuclideanDomain.toCommRing }))]
[CategoryTheory.GrpObj (H.asOver (Spec { carrier := k, commRing := Field.toEuclideanDomain.toCommRing }))]
[IsTorusOver k H]
(f : G ⟶ H)
[CategoryTheory.IsIso f]
[Hom.IsOver f (Spec { carrier := k, commRing := Field.toEuclideanDomain.toCommRing })]
[CategoryTheory.IsMonHom (Hom.asOver f (Spec { carrier := k, commRing := Field.toEuclideanDomain.toCommRing }))]
:
IsTorusOver k G
The (split) algebraic torus over S indexed by σ.
Equations
- One or more equations did not get rendered due to their size.
Instances For
The multiplicative group over S.
Equations
- One or more equations did not get rendered due to their size.
Instances For
theorem
AlgebraicGeometry.Scheme.exists_iso_splitTorus_of_isSplitTorusOver
(G S : Scheme)
[G.Over S]
[CategoryTheory.GrpObj (G.asOver S)]
[G.IsSplitTorusOver S]
:
∃ (σ : Type u) (e : G ≅ 𝔾ₘ[S, σ]) (x : Hom.IsOver e.hom S), CategoryTheory.IsMonHom (Hom.asOver e.hom S)
Every split torus that's locally of finite type is isomorphic to 𝔾ₘⁿ for some n.
@[reducible, inline]
The split torus with dimensions σ over Spec R is isomorphic to Spec R[ℤ^σ].