Documentation

Toric.GroupScheme.Diagonalizable

Equations
  • One or more equations did not get rendered due to their size.
Instances For

    The spectrum of a monoid algebra over an arbitrary base scheme S.

    Equations
    • One or more equations did not get rendered due to their size.
    Instances For
      theorem AlgebraicGeometry.Scheme.Diag.monObjAsOver_mul_left {S : Scheme} {M : Type u} [AddCommMonoid M] :
      CategoryTheory.MonObj.mul.left = CategoryTheory.CategoryStruct.comp (CategoryTheory.Functor.LaxMonoidal.μ (CategoryTheory.Over.pullback (specULiftZIsTerminal.from S)) (CategoryTheory.Over.mk (Spec { carrier := MonoidAlgebra (ULift.{u, 0} ) (Multiplicative M), commRing := MonoidAlgebra.commRing } Spec { carrier := ULift.{u, 0} , commRing := ULift.commRing })) (CategoryTheory.Over.mk (Spec { carrier := MonoidAlgebra (ULift.{u, 0} ) (Multiplicative M), commRing := MonoidAlgebra.commRing } Spec { carrier := ULift.{u, 0} , commRing := ULift.commRing }))).left (CategoryTheory.Limits.pullback.lift (CategoryTheory.CategoryStruct.comp (CategoryTheory.Limits.pullback.fst (CategoryTheory.CategoryStruct.comp (CategoryTheory.Limits.pullback.fst (Spec { carrier := MonoidAlgebra (ULift.{u, 0} ) (Multiplicative M), commRing := MonoidAlgebra.commRing } Spec { carrier := ULift.{u, 0} , commRing := ULift.commRing }) (Spec { carrier := MonoidAlgebra (ULift.{u, 0} ) (Multiplicative M), commRing := MonoidAlgebra.commRing } Spec { carrier := ULift.{u, 0} , commRing := ULift.commRing })) (Spec { carrier := MonoidAlgebra (ULift.{u, 0} ) (Multiplicative M), commRing := MonoidAlgebra.commRing } Spec { carrier := ULift.{u, 0} , commRing := ULift.commRing })) (specULiftZIsTerminal.from S)) CategoryTheory.MonObj.mul.left) (CategoryTheory.Limits.pullback.snd (CategoryTheory.CategoryStruct.comp (CategoryTheory.Limits.pullback.fst (Spec { carrier := MonoidAlgebra (ULift.{u, 0} ) (Multiplicative M), commRing := MonoidAlgebra.commRing } Spec { carrier := ULift.{u, 0} , commRing := ULift.commRing }) (Spec { carrier := MonoidAlgebra (ULift.{u, 0} ) (Multiplicative M), commRing := MonoidAlgebra.commRing } Spec { carrier := ULift.{u, 0} , commRing := ULift.commRing })) (Spec { carrier := MonoidAlgebra (ULift.{u, 0} ) (Multiplicative M), commRing := MonoidAlgebra.commRing } Spec { carrier := ULift.{u, 0} , commRing := ULift.commRing })) (specULiftZIsTerminal.from S)) )

      A monoid hom M → N induces a monoid morphism Diag S N ⟶ Diag S M.

      Equations
      • One or more equations did not get rendered due to their size.
      Instances For
        @[simp]
        @[simp]

        A monoid iso M ≃ N induces a monoid isomorphism Diag S M ≅ Diag S N.

        Equations
        Instances For
          @[simp]
          theorem AlgebraicGeometry.Scheme.Diag.mapIso_inv (S : Scheme) {M N : Type u} [AddCommMonoid M] [AddCommMonoid N] (f : M ≃+ N) :
          (mapIso S f).inv = map S f
          @[simp]
          theorem AlgebraicGeometry.Scheme.Diag.mapIso_hom (S : Scheme) {M N : Type u} [AddCommMonoid M] [AddCommMonoid N] (f : M ≃+ N) :
          (mapIso S f).hom = map S f.symm
          Equations
          • One or more equations did not get rendered due to their size.
          Instances For

            Diag is invariant under pullback.

            Equations
            • One or more equations did not get rendered due to their size.
            Instances For
              Equations
              • One or more equations did not get rendered due to their size.
              Instances For
                @[simp]
                theorem AlgebraicGeometry.Scheme.diagFunctor_map {S : Scheme} {M N : AddCommGrpCatᵒᵖ} (f : M N) :
                S.diagFunctor.map f = { hom := Hom.asOver (Diag.map S (AddCommGrpCat.Hom.hom f.unop)) S, isMonHom_hom := }
                Equations
                • One or more equations did not get rendered due to their size.
                Instances For
                  Equations
                  • One or more equations did not get rendered due to their size.
                  Instances For
                    instance AlgebraicGeometry.Scheme.faithful_diagFunctor {R : Type u_1} [CommRing R] [Nontrivial R] :
                    (Spec { carrier := R, commRing := inst✝ }).diagFunctor.Faithful
                    instance AlgebraicGeometry.Scheme.full_diagFunctor {R : Type u_1} [CommRing R] [IsDomain R] :
                    (Spec { carrier := R, commRing := inst✝ }).diagFunctor.Full
                    Equations
                    Instances For
                      Equations
                      Instances For
                        theorem AlgebraicGeometry.Scheme.HomGrp.toHom_injective_iff {G G' S : Scheme} [G.Over S] [G'.Over S] [CategoryTheory.GrpObj (G.asOver S)] [CategoryTheory.GrpObj (G'.asOver S)] {a₁ a₂ : G.HomGrp G' S} :
                        a₁ = a₂ a₁.hom = a₂.hom
                        theorem AlgebraicGeometry.Scheme.HomGrp.comp_add {G G' G'' S : Scheme} [G.Over S] [G'.Over S] [G''.Over S] [CategoryTheory.GrpObj (G.asOver S)] [CategoryTheory.GrpObj (G'.asOver S)] [CategoryTheory.GrpObj (G''.asOver S)] [CategoryTheory.IsCommMonObj (G'.asOver S)] [CategoryTheory.IsCommMonObj (G''.asOver S)] (f f' : G.HomGrp G' S) (g : G'.HomGrp G'' S) :
                        (f + f').comp g = f.comp g + f'.comp g
                        theorem AlgebraicGeometry.Scheme.HomGrp.add_comp {G G' G'' S : Scheme} [G.Over S] [G'.Over S] [G''.Over S] [CategoryTheory.GrpObj (G.asOver S)] [CategoryTheory.GrpObj (G'.asOver S)] [CategoryTheory.GrpObj (G''.asOver S)] [CategoryTheory.IsCommMonObj (G''.asOver S)] (f : G.HomGrp G' S) (g g' : G'.HomGrp G'' S) :
                        f.comp (g + g') = f.comp g + f.comp g'
                        Equations
                        • One or more equations did not get rendered due to their size.
                        Instances For
                          def AlgebraicGeometry.Scheme.diagHomGrp (S : Scheme) {M N : Type u} [AddCommGroup M] [AddCommGroup N] (f : M →+ N) :
                          (S.Diag N).HomGrp (S.Diag M) S
                          Equations
                          Instances For
                            def AlgebraicGeometry.Scheme.diagHomEquiv {R M N : Type u} [CommRing R] [IsDomain R] [AddCommGroup M] [AddCommGroup N] :
                            (N →+ M) ≃+ ((Spec { carrier := R, commRing := inst✝ }).Diag M).HomGrp ((Spec { carrier := R, commRing := inst✝ }).Diag N) (Spec { carrier := R, commRing := inst✝ })
                            Equations
                            • One or more equations did not get rendered due to their size.
                            Instances For
                              theorem AlgebraicGeometry.Scheme.diagHomEquiv_apply {R M N : Type u} [CommRing R] [IsDomain R] [AddCommGroup M] [AddCommGroup N] (f : N →+ M) :
                              diagHomEquiv f = (Spec { carrier := R, commRing := inst✝ }).diagHomGrp f
                              Instances

                                An affine algebraic group G over a domain R is diagonalisable iff it is affine and Γ(G) is R-spanned by its group-like elements.

                                Note that this is more generally true over arbitrary commutative rings, but we do not prove that. See SGA III, Exposé VIII for more info.

                                Note that more generally a not necessarily affine algebraic group G over a field K is diagonalisable iff it is affine and Γ(G) is K-spanned by its group-like elements, but we do not prove that.