Documentation

Toric.Mathlib.Algebra.Category.CommHopfAlgCat

The category of commutative Hopf algebras over a commutative ring #

This file defines the bundled category CommHopfAlgCat of commutative Hopf algebras over a fixed commutative ring R along with the forgetful functor to CommBialgCat.

structure CommHopfAlgCat (R : Type u) [CommRing R] :
Type (max u (v + 1))

The category of commutative R-Hopf algebras and their morphisms.

Instances For
    @[reducible, inline]
    abbrev CommHopfAlgCat.of (R : Type u) [CommRing R] (X : Type v) [CommRing X] [HopfAlgebra R X] :

    Turn an unbundled R-Hopf algebra into the corresponding object in the category of R-Hopf algebras.

    This is the preferred way to construct a term of CommHopfAlgCat R.

    Equations
    Instances For
      theorem CommHopfAlgCat.coe_of (R : Type u) [CommRing R] (X : Type v) [CommRing X] [HopfAlgebra R X] :
      (of R X) = X
      structure CommHopfAlgCat.Hom {R : Type u} [CommRing R] (A B : CommHopfAlgCat R) :

      The type of morphisms in CommHopfAlgCat R.

      • hom' : A →ₐc[R] B

        The underlying bialgebra map.

      Instances For
        theorem CommHopfAlgCat.Hom.ext_iff {R : Type u} {inst✝ : CommRing R} {A B : CommHopfAlgCat R} {x y : A.Hom B} :
        x = y x.hom' = y.hom'
        theorem CommHopfAlgCat.Hom.ext {R : Type u} {inst✝ : CommRing R} {A B : CommHopfAlgCat R} {x y : A.Hom B} (hom' : x.hom' = y.hom') :
        x = y
        Equations
        • One or more equations did not get rendered due to their size.
        Equations
        • One or more equations did not get rendered due to their size.
        @[reducible, inline]
        abbrev CommHopfAlgCat.Hom.hom {R : Type u} [CommRing R] {A B : CommHopfAlgCat R} (f : A.Hom B) :
        A →ₐc[R] B

        Turn a morphism in CommHopfAlgCat back into a BialgHom.

        Equations
        Instances For
          @[reducible, inline]
          abbrev CommHopfAlgCat.ofHom {R : Type u} [CommRing R] {X Y : Type v} {x✝ : CommRing X} {x✝¹ : CommRing Y} {x✝² : HopfAlgebra R X} {x✝³ : HopfAlgebra R Y} (f : X →ₐc[R] Y) :
          of R X of R Y

          Typecheck a BialgHom as a morphism in CommHopfAlgCat R.

          Equations
          Instances For
            def CommHopfAlgCat.Hom.Simps.hom {R : Type u} [CommRing R] (A B : CommHopfAlgCat R) (f : A.Hom B) :
            A →ₐc[R] B

            Use the ConcreteCategory.hom projection for @[simps] lemmas.

            Equations
            Instances For

              The results below duplicate the ConcreteCategory simp lemmas, but we can keep them for dsimp.

              @[simp]
              theorem CommHopfAlgCat.hom_comp {R : Type u} [CommRing R] {A B C : CommHopfAlgCat R} (f : A B) (g : B C) :
              @[simp]
              theorem CommHopfAlgCat.hom_ofHom {R : Type u} [CommRing R] {X Y : Type v} [CommRing X] [HopfAlgebra R X] [CommRing Y] [HopfAlgebra R Y] (f : X →ₐc[R] Y) :
              @[simp]
              theorem CommHopfAlgCat.ofHom_hom {R : Type u} [CommRing R] {A B : CommHopfAlgCat R} (f : A B) :
              @[simp]
              theorem CommHopfAlgCat.ofHom_comp {R : Type u} [CommRing R] {X Y Z : Type v} [CommRing X] [HopfAlgebra R X] [CommRing Y] [HopfAlgebra R Y] [CommRing Z] [HopfAlgebra R Z] (f : X →ₐc[R] Y) (g : Y →ₐc[R] Z) :
              theorem CommHopfAlgCat.ofHom_apply {R : Type u} [CommRing R] {X Y : Type v} [CommRing X] [HopfAlgebra R X] [CommRing Y] [HopfAlgebra R Y] (f : X →ₐc[R] Y) (x : X) :
              Equations
              • One or more equations did not get rendered due to their size.
              def CommHopfAlgCat.ofSelfIso {R : Type u} [CommRing R] (A : CommHopfAlgCat R) :
              of R A A

              Forgetting to the underlying type and then building the bundled object returns the original Hopf algebra.

              Equations
              Instances For
                def CommHopfAlgCat.isoMk {R : Type u} [CommRing R] {X Y : Type v} {x✝ : CommRing X} {x✝¹ : CommRing Y} {x✝² : HopfAlgebra R X} {x✝³ : HopfAlgebra R Y} (e : X ≃ₐc[R] Y) :
                of R X of R Y

                Build an isomorphism in the category CommHopfAlgCat R from a BialgEquiv between HopfAlgebras.

                Equations
                Instances For
                  @[simp]
                  theorem CommHopfAlgCat.isoMk_inv {R : Type u} [CommRing R] {X Y : Type v} {x✝ : CommRing X} {x✝¹ : CommRing Y} {x✝² : HopfAlgebra R X} {x✝³ : HopfAlgebra R Y} (e : X ≃ₐc[R] Y) :
                  (isoMk e).inv = ofHom e.symm
                  @[simp]
                  theorem CommHopfAlgCat.isoMk_hom {R : Type u} [CommRing R] {X Y : Type v} {x✝ : CommRing X} {x✝¹ : CommRing Y} {x✝² : HopfAlgebra R X} {x✝³ : HopfAlgebra R Y} (e : X ≃ₐc[R] Y) :
                  (isoMk e).hom = ofHom e
                  def CommHopfAlgCat.ofIso {R : Type u} [CommRing R] {A B : CommHopfAlgCat R} (i : A B) :
                  A ≃ₐc[R] B

                  Build a BialgEquiv from an isomorphism in the category CommHopfAlgCat R.

                  Equations
                  • One or more equations did not get rendered due to their size.
                  Instances For
                    @[simp]
                    theorem CommHopfAlgCat.ofIso_apply {R : Type u} [CommRing R] {A B : CommHopfAlgCat R} (i : A B) (a : A) :
                    @[simp]
                    theorem CommHopfAlgCat.ofIso_symm_apply {R : Type u} [CommRing R] {A B : CommHopfAlgCat R} (i : A B) (a : B) :
                    def CommHopfAlgCat.isoEquivBialgEquiv {R : Type u} [CommRing R] {X Y : Type v} [CommRing X] [HopfAlgebra R X] [CommRing Y] [HopfAlgebra R Y] :
                    (of R X of R Y) X ≃ₐc[R] Y

                    Commutative Hopf algebra equivalences between HopfAlgebras are the same as isomorphisms in CommHopfAlgCat R.

                    Equations
                    Instances For
                      @[simp]
                      Equations

                      Commutative Hopf algebras over a commutative ring R are the same thing as cogroup R-algebras.

                      Equations
                      • One or more equations did not get rendered due to their size.
                      Instances For