Documentation

Toric.Mathlib.RingTheory.Bialgebra.TensorProduct

noncomputable def Bialgebra.mulCoalgHom (R : Type u_1) (A : Type u_2) [CommSemiring R] [Semiring A] [Bialgebra R A] :

Multiplication on a bialgebra as a coalgebra hom.

Equations
Instances For
    @[simp]
    theorem Bialgebra.mulCoalgHom_apply {R : Type u_1} {A : Type u_2} [CommSemiring R] [Semiring A] [Bialgebra R A] (a b : A) :
    (mulCoalgHom R A) (a ⊗ₜ[R] b) = a * b
    noncomputable def Bialgebra.TensorProduct.comm (R : Type u_1) (A : Type u_2) (B : Type u_3) [CommSemiring R] [CommSemiring A] [CommSemiring B] [Bialgebra R A] [Bialgebra R B] :

    The tensor product of R-bialgebras is commutative, up to bialgebra isomorphism.

    Equations
    Instances For
      noncomputable def Bialgebra.mulBialgHom (R : Type u_1) (A : Type u_2) [CommSemiring R] [CommSemiring A] [Bialgebra R A] :

      Multiplication on a commutative bialgebra as a bialgebra hom.

      Equations
      Instances For
        @[simp]
        theorem Bialgebra.mulBialgHom_apply {R : Type u_1} {A : Type u_2} [CommSemiring R] [CommSemiring A] [Bialgebra R A] (a b : A) :
        (mulBialgHom R A) (a ⊗ₜ[R] b) = a * b
        noncomputable def Bialgebra.comulBialgHom (R : Type u_1) (A : Type u_2) [CommSemiring R] [CommSemiring A] [Bialgebra R A] [Coalgebra.IsCocomm R A] :
        Equations
        Instances For
          def Coalgebra.Repr.tmul {R : Type u_1} {A : Type u_2} [CommSemiring R] [CommSemiring A] [Bialgebra R A] {a b : A} (ℛa : Repr R a) (ℛb : Repr R b) :
          Repr R (a ⊗ₜ[R] b)

          Representations of a and b yield a representation of a ⊗ b.

          Equations
          • One or more equations did not get rendered due to their size.
          Instances For
            @[simp]
            theorem Coalgebra.Repr.tmul_index {R : Type u_1} {A : Type u_2} [CommSemiring R] [CommSemiring A] [Bialgebra R A] {a b : A} (ℛa : Repr R a) (ℛb : Repr R b) :
            (ℛa.tmul ℛb).index = ℛa.index ×ˢ ℛb.index
            @[simp]
            theorem Coalgebra.Repr.tmul_left {R : Type u_1} {A : Type u_2} [CommSemiring R] [CommSemiring A] [Bialgebra R A] {a b : A} (ℛa : Repr R a) (ℛb : Repr R b) (i : ℛa.ι × ℛb.ι) :
            (ℛa.tmul ℛb).left i = ℛa.left i.1 ⊗ₜ[R] ℛb.left i.2
            @[simp]
            theorem Coalgebra.Repr.tmul_right {R : Type u_1} {A : Type u_2} [CommSemiring R] [CommSemiring A] [Bialgebra R A] {a b : A} (ℛa : Repr R a) (ℛb : Repr R b) (i : ℛa.ι × ℛb.ι) :
            (ℛa.tmul ℛb).right i = ℛa.right i.1 ⊗ₜ[R] ℛb.right i.2
            @[simp]
            theorem Coalgebra.Repr.tmul_ι {R : Type u_1} {A : Type u_2} [CommSemiring R] [CommSemiring A] [Bialgebra R A] {a b : A} (ℛa : Repr R a) (ℛb : Repr R b) :
            (ℛa.tmul ℛb).ι = (ℛa.ι × ℛb.ι)
            noncomputable def Coalgebra.Repr.mul {R : Type u_4} {A : Type u_5} [CommSemiring R] [CommSemiring A] [Bialgebra R A] {a₁ a₂ : A} (ℛ₁ : Repr R a₁) (ℛ₂ : Repr R a₂) :
            Repr R (a₁ * a₂)

            Representations of a₁ and a₂ yield a representation of a₁ * a₂.

            Equations
            Instances For
              @[simp]
              theorem Coalgebra.Repr.mul_left {R : Type u_4} {A : Type u_5} [CommSemiring R] [CommSemiring A] [Bialgebra R A] {a₁ a₂ : A} (ℛ₁ : Repr R a₁) (ℛ₂ : Repr R a₂) (a✝ : (ℛ₁.tmul ℛ₂).ι) :
              (ℛ₁.mul ℛ₂).left a✝ = ℛ₁.left a✝.1 * ℛ₂.left a✝.2
              @[simp]
              theorem Coalgebra.Repr.mul_right {R : Type u_4} {A : Type u_5} [CommSemiring R] [CommSemiring A] [Bialgebra R A] {a₁ a₂ : A} (ℛ₁ : Repr R a₁) (ℛ₂ : Repr R a₂) (a✝ : (ℛ₁.tmul ℛ₂).ι) :
              (ℛ₁.mul ℛ₂).right a✝ = ℛ₁.right a✝.1 * ℛ₂.right a✝.2
              @[simp]
              theorem Coalgebra.Repr.mul_ι {R : Type u_4} {A : Type u_5} [CommSemiring R] [CommSemiring A] [Bialgebra R A] {a₁ a₂ : A} (ℛ₁ : Repr R a₁) (ℛ₂ : Repr R a₂) :
              (ℛ₁.mul ℛ₂).ι = (ℛ₁.ι × ℛ₂.ι)
              @[simp]
              theorem Coalgebra.Repr.mul_index_val {R : Type u_4} {A : Type u_5} [CommSemiring R] [CommSemiring A] [Bialgebra R A] {a₁ a₂ : A} (ℛ₁ : Repr R a₁) (ℛ₂ : Repr R a₂) :
              (ℛ₁.mul ℛ₂).index.val = ℛ₁.index.val ×ˢ ℛ₂.index.val
              @[simp]
              theorem Coalgebra.Repr.mul_index {R : Type u_4} {A : Type u_5} [CommSemiring R] [CommSemiring A] [Bialgebra R A] {a₁ a₂ : A} (ℛ₁ : Repr R a₁) (ℛ₂ : Repr R a₂) :
              (ℛ₁.mul ℛ₂).index = ℛ₁.index ×ˢ ℛ₂.index