@[simp]
theorem
Bialgebra.counitAlgHom_comp_includeRight
{R : Type u_1}
{A : Type u_2}
{B : Type u_3}
[CommSemiring R]
[CommSemiring A]
[Semiring B]
[Algebra R A]
[Bialgebra R B]
:
(AlgHom.restrictScalars R (counitAlgHom A (TensorProduct R A B))).comp Algebra.TensorProduct.includeRight = (Algebra.ofId R A).comp (counitAlgHom R B)
theorem
Bialgebra.comul_includeRight
{R : Type u_1}
{A : Type u_2}
{B : Type u_3}
[CommSemiring R]
[CommSemiring A]
[CommSemiring B]
[Bialgebra R B]
[Algebra R A]
:
(↑(comulAlgHom A (TensorProduct R A B))).comp ↑Algebra.TensorProduct.includeRight = (Algebra.TensorProduct.mapRingHom (algebraMap R A) ↑Algebra.TensorProduct.includeRight
↑Algebra.TensorProduct.includeRight ⋯ ⋯).comp
↑(comulAlgHom R B)
noncomputable def
Bialgebra.mulCoalgHom
(R : Type u_1)
(A : Type u_2)
[CommSemiring R]
[Semiring A]
[Bialgebra R A]
:
Multiplication on a bialgebra as a coalgebra hom.
Equations
- Bialgebra.mulCoalgHom R A = { toAddHom := (LinearMap.mul' R A).toAddHom, map_smul' := ⋯, counit_comp := ⋯, map_comp_comul := ⋯ }
Instances For
@[simp]
theorem
Bialgebra.mulCoalgHom_apply
{R : Type u_1}
{A : Type u_2}
[CommSemiring R]
[Semiring A]
[Bialgebra R A]
(a b : A)
:
noncomputable def
Bialgebra.TensorProduct.comm
(R : Type u_1)
(A : Type u_2)
(B : Type u_3)
[CommSemiring R]
[CommSemiring A]
[CommSemiring B]
[Bialgebra R A]
[Bialgebra R B]
:
The tensor product of R-bialgebras is commutative, up to bialgebra isomorphism.
Equations
- Bialgebra.TensorProduct.comm R A B = BialgEquiv.ofAlgEquiv (Algebra.TensorProduct.comm R A B) ⋯ ⋯
Instances For
noncomputable def
Bialgebra.mulBialgHom
(R : Type u_1)
(A : Type u_2)
[CommSemiring R]
[CommSemiring A]
[Bialgebra R A]
:
Multiplication on a commutative bialgebra as a bialgebra hom.
Equations
- Bialgebra.mulBialgHom R A = { toFun := (↑↑(Algebra.TensorProduct.lmul' R).toRingHom).toFun, map_add' := ⋯, map_smul' := ⋯, counit_comp := ⋯, map_comp_comul := ⋯, map_one' := ⋯, map_mul' := ⋯ }
Instances For
@[simp]
theorem
Bialgebra.mulBialgHom_apply
{R : Type u_1}
{A : Type u_2}
[CommSemiring R]
[CommSemiring A]
[Bialgebra R A]
(a b : A)
:
noncomputable def
Bialgebra.comulBialgHom
(R : Type u_1)
(A : Type u_2)
[CommSemiring R]
[CommSemiring A]
[Bialgebra R A]
[Coalgebra.IsCocomm R A]
:
Equations
- Bialgebra.comulBialgHom R A = { toFun := (↑↑(Bialgebra.comulAlgHom R A).toRingHom).toFun, map_add' := ⋯, map_smul' := ⋯, counit_comp := ⋯, map_comp_comul := ⋯, map_one' := ⋯, map_mul' := ⋯ }
Instances For
theorem
Bialgebra.comm_comp_comulBialgHom
(R : Type u_1)
(A : Type u_2)
[CommSemiring R]
[CommSemiring A]
[Bialgebra R A]
[Coalgebra.IsCocomm R A]
:
def
Coalgebra.Repr.tmul
{R : Type u_1}
{A : Type u_2}
[CommSemiring R]
[CommSemiring A]
[Bialgebra R A]
{a b : A}
(ℛa : Repr R a)
(ℛb : Repr R b)
:
Representations of a and b yield a representation of a ⊗ b.
Equations
- One or more equations did not get rendered due to their size.
Instances For
@[simp]
theorem
Coalgebra.Repr.tmul_index
{R : Type u_1}
{A : Type u_2}
[CommSemiring R]
[CommSemiring A]
[Bialgebra R A]
{a b : A}
(ℛa : Repr R a)
(ℛb : Repr R b)
:
@[simp]
theorem
Coalgebra.Repr.tmul_ι
{R : Type u_1}
{A : Type u_2}
[CommSemiring R]
[CommSemiring A]
[Bialgebra R A]
{a b : A}
(ℛa : Repr R a)
(ℛb : Repr R b)
:
noncomputable def
Coalgebra.Repr.mul
{R : Type u_4}
{A : Type u_5}
[CommSemiring R]
[CommSemiring A]
[Bialgebra R A]
{a₁ a₂ : A}
(ℛ₁ : Repr R a₁)
(ℛ₂ : Repr R a₂)
:
Representations of a₁ and a₂ yield a representation of a₁ * a₂.
Equations
- ℛ₁.mul ℛ₂ = (ℛ₁.tmul ℛ₂).induced (Bialgebra.mulCoalgHom R A)
Instances For
@[simp]
theorem
Coalgebra.Repr.mul_ι
{R : Type u_4}
{A : Type u_5}
[CommSemiring R]
[CommSemiring A]
[Bialgebra R A]
{a₁ a₂ : A}
(ℛ₁ : Repr R a₁)
(ℛ₂ : Repr R a₂)
:
@[simp]
theorem
Coalgebra.Repr.mul_index
{R : Type u_4}
{A : Type u_5}
[CommSemiring R]
[CommSemiring A]
[Bialgebra R A]
{a₁ a₂ : A}
(ℛ₁ : Repr R a₁)
(ℛ₂ : Repr R a₂)
: