Documentation

Mathlib.MeasureTheory.Function.LpSeminorm.Basic

ℒp space #

This file describes properties of almost everywhere strongly measurable functions with finite p-seminorm, denoted by eLpNorm f p μ and defined for p:ℝ≥0∞ as 0 if p=0, (∫ ‖f a‖^p ∂μ) ^ (1/p) for 0 < p < ∞ and essSup ‖f‖ μ for p=∞.

The Prop-valued Memℒp f p μ states that a function f : α → E has finite p-seminorm and is almost everywhere strongly measurable.

Main definitions #

ℒp seminorm #

We define the ℒp seminorm, denoted by eLpNorm f p μ. For real p, it is given by an integral formula (for which we use the notation eLpNorm' f p μ), and for p = ∞ it is the essential supremum (for which we use the notation eLpNormEssSup f μ).

We also define a predicate Memℒp f p μ, requesting that a function is almost everywhere measurable and has finite eLpNorm f p μ.

This paragraph is devoted to the basic properties of these definitions. It is constructed as follows: for a given property, we prove it for eLpNorm' and eLpNormEssSup when it makes sense, deduce it for eLpNorm, and translate it in terms of Memℒp.

def MeasureTheory.eLpNorm' {α : Type u_1} {ε : Type u_2} [ENorm ε] {x✝ : MeasurableSpace α} (f : αε) (q : ) (μ : MeasureTheory.Measure α) :

(∫ ‖f a‖^q ∂μ) ^ (1/q), which is a seminorm on the space of measurable functions for which this quantity is finite

Equations
Instances For
    theorem MeasureTheory.eLpNorm'_eq_lintegral_nnnorm {α : Type u_1} {F : Type u_4} [NormedAddCommGroup F] {x✝ : MeasurableSpace α} (f : αF) (q : ) (μ : MeasureTheory.Measure α) :
    MeasureTheory.eLpNorm' f q μ = (∫⁻ (a : α), f a‖₊ ^ qμ) ^ (1 / q)
    def MeasureTheory.eLpNormEssSup {α : Type u_1} {ε : Type u_2} [ENorm ε] {x✝ : MeasurableSpace α} (f : αε) (μ : MeasureTheory.Measure α) :

    seminorm for ℒ∞, equal to the essential supremum of ‖f‖.

    Equations
    Instances For
      theorem MeasureTheory.eLpNormEssSup_eq_essSup_nnnorm {α : Type u_1} {F : Type u_4} [NormedAddCommGroup F] {x✝ : MeasurableSpace α} (f : αF) (μ : MeasureTheory.Measure α) :
      MeasureTheory.eLpNormEssSup f μ = essSup (fun (x : α) => f x‖₊) μ
      def MeasureTheory.eLpNorm {α : Type u_1} {ε : Type u_2} [ENorm ε] {x✝ : MeasurableSpace α} (f : αε) (p : ENNReal) (μ : MeasureTheory.Measure α := by volume_tac) :

      ℒp seminorm, equal to 0 for p=0, to (∫ ‖f a‖^p ∂μ) ^ (1/p) for 0 < p < ∞ and to essSup ‖f‖ μ for p = ∞.

      Equations
      Instances For
        @[deprecated MeasureTheory.eLpNorm]
        def MeasureTheory.snorm {α : Type u_1} {ε : Type u_2} [ENorm ε] {x✝ : MeasurableSpace α} (f : αε) (p : ENNReal) (μ : MeasureTheory.Measure α := by volume_tac) :

        Alias of MeasureTheory.eLpNorm.


        ℒp seminorm, equal to 0 for p=0, to (∫ ‖f a‖^p ∂μ) ^ (1/p) for 0 < p < ∞ and to essSup ‖f‖ μ for p = ∞.

        Equations
        Instances For
          theorem MeasureTheory.eLpNorm_eq_eLpNorm' {α : Type u_1} {F : Type u_4} {m0 : MeasurableSpace α} {p : ENNReal} {μ : MeasureTheory.Measure α} [NormedAddCommGroup F] (hp_ne_zero : p 0) (hp_ne_top : p ) {f : αF} :
          @[deprecated MeasureTheory.eLpNorm_eq_eLpNorm']
          theorem MeasureTheory.snorm_eq_snorm' {α : Type u_1} {F : Type u_4} {m0 : MeasurableSpace α} {p : ENNReal} {μ : MeasureTheory.Measure α} [NormedAddCommGroup F] (hp_ne_zero : p 0) (hp_ne_top : p ) {f : αF} :

          Alias of MeasureTheory.eLpNorm_eq_eLpNorm'.

          theorem MeasureTheory.eLpNorm_nnreal_eq_eLpNorm' {α : Type u_1} {F : Type u_4} {m0 : MeasurableSpace α} {μ : MeasureTheory.Measure α} [NormedAddCommGroup F] {f : αF} {p : NNReal} (hp : p 0) :
          @[deprecated MeasureTheory.eLpNorm_nnreal_eq_eLpNorm']
          theorem MeasureTheory.snorm_nnreal_eq_snorm' {α : Type u_1} {F : Type u_4} {m0 : MeasurableSpace α} {μ : MeasureTheory.Measure α} [NormedAddCommGroup F] {f : αF} {p : NNReal} (hp : p 0) :

          Alias of MeasureTheory.eLpNorm_nnreal_eq_eLpNorm'.

          theorem MeasureTheory.eLpNorm_eq_lintegral_rpow_nnnorm {α : Type u_1} {F : Type u_4} {m0 : MeasurableSpace α} {p : ENNReal} {μ : MeasureTheory.Measure α} [NormedAddCommGroup F] (hp_ne_zero : p 0) (hp_ne_top : p ) {f : αF} :
          MeasureTheory.eLpNorm f p μ = (∫⁻ (x : α), f x‖₊ ^ p.toRealμ) ^ (1 / p.toReal)
          @[deprecated MeasureTheory.eLpNorm_eq_lintegral_rpow_nnnorm]
          theorem MeasureTheory.snorm_eq_lintegral_rpow_nnnorm {α : Type u_1} {F : Type u_4} {m0 : MeasurableSpace α} {p : ENNReal} {μ : MeasureTheory.Measure α} [NormedAddCommGroup F] (hp_ne_zero : p 0) (hp_ne_top : p ) {f : αF} :
          MeasureTheory.eLpNorm f p μ = (∫⁻ (x : α), f x‖₊ ^ p.toRealμ) ^ (1 / p.toReal)

          Alias of MeasureTheory.eLpNorm_eq_lintegral_rpow_nnnorm.

          theorem MeasureTheory.eLpNorm_nnreal_eq_lintegral {α : Type u_1} {F : Type u_4} {m0 : MeasurableSpace α} {μ : MeasureTheory.Measure α} [NormedAddCommGroup F] {f : αF} {p : NNReal} (hp : p 0) :
          MeasureTheory.eLpNorm f (↑p) μ = (∫⁻ (x : α), f x‖₊ ^ pμ) ^ (1 / p)
          @[deprecated MeasureTheory.eLpNorm_nnreal_eq_lintegral]
          theorem MeasureTheory.snorm_nnreal_eq_lintegral {α : Type u_1} {F : Type u_4} {m0 : MeasurableSpace α} {μ : MeasureTheory.Measure α} [NormedAddCommGroup F] {f : αF} {p : NNReal} (hp : p 0) :
          MeasureTheory.eLpNorm f (↑p) μ = (∫⁻ (x : α), f x‖₊ ^ pμ) ^ (1 / p)

          Alias of MeasureTheory.eLpNorm_nnreal_eq_lintegral.

          theorem MeasureTheory.eLpNorm_one_eq_lintegral_nnnorm {α : Type u_1} {F : Type u_4} {m0 : MeasurableSpace α} {μ : MeasureTheory.Measure α} [NormedAddCommGroup F] {f : αF} :
          MeasureTheory.eLpNorm f 1 μ = ∫⁻ (x : α), f x‖₊μ
          @[deprecated MeasureTheory.eLpNorm_one_eq_lintegral_nnnorm]
          theorem MeasureTheory.snorm_one_eq_lintegral_nnnorm {α : Type u_1} {F : Type u_4} {m0 : MeasurableSpace α} {μ : MeasureTheory.Measure α} [NormedAddCommGroup F] {f : αF} :
          MeasureTheory.eLpNorm f 1 μ = ∫⁻ (x : α), f x‖₊μ

          Alias of MeasureTheory.eLpNorm_one_eq_lintegral_nnnorm.

          @[deprecated MeasureTheory.eLpNorm_exponent_top]

          Alias of MeasureTheory.eLpNorm_exponent_top.

          def MeasureTheory.Memℒp {ε : Type u_2} [ENorm ε] {α : Type u_6} {x✝ : MeasurableSpace α} [TopologicalSpace ε] (f : αε) (p : ENNReal) (μ : MeasureTheory.Measure α := by volume_tac) :

          The property that f:α→E is ae strongly measurable and (∫ ‖f a‖^p ∂μ)^(1/p) is finite if p < ∞, or essSup f < ∞ if p = ∞.

          Equations
          Instances For
            theorem MeasureTheory.lintegral_rpow_nnnorm_eq_rpow_eLpNorm' {α : Type u_1} {F : Type u_4} {m0 : MeasurableSpace α} {q : } {μ : MeasureTheory.Measure α} [NormedAddCommGroup F] {f : αF} (hq0_lt : 0 < q) :
            ∫⁻ (a : α), f a‖₊ ^ qμ = MeasureTheory.eLpNorm' f q μ ^ q
            @[deprecated MeasureTheory.lintegral_rpow_nnnorm_eq_rpow_eLpNorm']
            theorem MeasureTheory.lintegral_rpow_nnnorm_eq_rpow_snorm' {α : Type u_1} {F : Type u_4} {m0 : MeasurableSpace α} {q : } {μ : MeasureTheory.Measure α} [NormedAddCommGroup F] {f : αF} (hq0_lt : 0 < q) :
            ∫⁻ (a : α), f a‖₊ ^ qμ = MeasureTheory.eLpNorm' f q μ ^ q

            Alias of MeasureTheory.lintegral_rpow_nnnorm_eq_rpow_eLpNorm'.

            theorem MeasureTheory.eLpNorm_nnreal_pow_eq_lintegral {α : Type u_1} {F : Type u_4} {m0 : MeasurableSpace α} {μ : MeasureTheory.Measure α} [NormedAddCommGroup F] {f : αF} {p : NNReal} (hp : p 0) :
            MeasureTheory.eLpNorm f (↑p) μ ^ p = ∫⁻ (x : α), f x‖₊ ^ pμ
            @[deprecated MeasureTheory.eLpNorm_nnreal_pow_eq_lintegral]
            theorem MeasureTheory.snorm_nnreal_pow_eq_lintegral {α : Type u_1} {F : Type u_4} {m0 : MeasurableSpace α} {μ : MeasureTheory.Measure α} [NormedAddCommGroup F] {f : αF} {p : NNReal} (hp : p 0) :
            MeasureTheory.eLpNorm f (↑p) μ ^ p = ∫⁻ (x : α), f x‖₊ ^ pμ

            Alias of MeasureTheory.eLpNorm_nnreal_pow_eq_lintegral.

            theorem MeasureTheory.Memℒp.eLpNorm_lt_top {α : Type u_1} {E : Type u_3} {m0 : MeasurableSpace α} {p : ENNReal} {μ : MeasureTheory.Measure α} [NormedAddCommGroup E] {f : αE} (hfp : MeasureTheory.Memℒp f p μ) :
            @[deprecated MeasureTheory.Memℒp.eLpNorm_lt_top]
            theorem MeasureTheory.Memℒp.snorm_lt_top {α : Type u_1} {E : Type u_3} {m0 : MeasurableSpace α} {p : ENNReal} {μ : MeasureTheory.Measure α} [NormedAddCommGroup E] {f : αE} (hfp : MeasureTheory.Memℒp f p μ) :

            Alias of MeasureTheory.Memℒp.eLpNorm_lt_top.

            theorem MeasureTheory.Memℒp.eLpNorm_ne_top {α : Type u_1} {E : Type u_3} {m0 : MeasurableSpace α} {p : ENNReal} {μ : MeasureTheory.Measure α} [NormedAddCommGroup E] {f : αE} (hfp : MeasureTheory.Memℒp f p μ) :
            @[deprecated MeasureTheory.Memℒp.eLpNorm_ne_top]
            theorem MeasureTheory.Memℒp.snorm_ne_top {α : Type u_1} {E : Type u_3} {m0 : MeasurableSpace α} {p : ENNReal} {μ : MeasureTheory.Measure α} [NormedAddCommGroup E] {f : αE} (hfp : MeasureTheory.Memℒp f p μ) :

            Alias of MeasureTheory.Memℒp.eLpNorm_ne_top.

            theorem MeasureTheory.lintegral_rpow_nnnorm_lt_top_of_eLpNorm'_lt_top {α : Type u_1} {F : Type u_4} {m0 : MeasurableSpace α} {q : } {μ : MeasureTheory.Measure α} [NormedAddCommGroup F] {f : αF} (hq0_lt : 0 < q) (hfq : MeasureTheory.eLpNorm' f q μ < ) :
            ∫⁻ (a : α), f a‖₊ ^ qμ <
            @[deprecated MeasureTheory.lintegral_rpow_nnnorm_lt_top_of_eLpNorm'_lt_top]
            theorem MeasureTheory.lintegral_rpow_nnnorm_lt_top_of_snorm'_lt_top {α : Type u_1} {F : Type u_4} {m0 : MeasurableSpace α} {q : } {μ : MeasureTheory.Measure α} [NormedAddCommGroup F] {f : αF} (hq0_lt : 0 < q) (hfq : MeasureTheory.eLpNorm' f q μ < ) :
            ∫⁻ (a : α), f a‖₊ ^ qμ <

            Alias of MeasureTheory.lintegral_rpow_nnnorm_lt_top_of_eLpNorm'_lt_top.

            theorem MeasureTheory.lintegral_rpow_nnnorm_lt_top_of_eLpNorm_lt_top {α : Type u_1} {F : Type u_4} {m0 : MeasurableSpace α} {p : ENNReal} {μ : MeasureTheory.Measure α} [NormedAddCommGroup F] {f : αF} (hp_ne_zero : p 0) (hp_ne_top : p ) (hfp : MeasureTheory.eLpNorm f p μ < ) :
            ∫⁻ (a : α), f a‖₊ ^ p.toRealμ <
            @[deprecated MeasureTheory.lintegral_rpow_nnnorm_lt_top_of_eLpNorm_lt_top]
            theorem MeasureTheory.lintegral_rpow_nnnorm_lt_top_of_snorm_lt_top {α : Type u_1} {F : Type u_4} {m0 : MeasurableSpace α} {p : ENNReal} {μ : MeasureTheory.Measure α} [NormedAddCommGroup F] {f : αF} (hp_ne_zero : p 0) (hp_ne_top : p ) (hfp : MeasureTheory.eLpNorm f p μ < ) :
            ∫⁻ (a : α), f a‖₊ ^ p.toRealμ <

            Alias of MeasureTheory.lintegral_rpow_nnnorm_lt_top_of_eLpNorm_lt_top.

            theorem MeasureTheory.eLpNorm_lt_top_iff_lintegral_rpow_nnnorm_lt_top {α : Type u_1} {F : Type u_4} {m0 : MeasurableSpace α} {p : ENNReal} {μ : MeasureTheory.Measure α} [NormedAddCommGroup F] {f : αF} (hp_ne_zero : p 0) (hp_ne_top : p ) :
            MeasureTheory.eLpNorm f p μ < ∫⁻ (a : α), f a‖₊ ^ p.toRealμ <
            @[deprecated MeasureTheory.eLpNorm_lt_top_iff_lintegral_rpow_nnnorm_lt_top]
            theorem MeasureTheory.snorm_lt_top_iff_lintegral_rpow_nnnorm_lt_top {α : Type u_1} {F : Type u_4} {m0 : MeasurableSpace α} {p : ENNReal} {μ : MeasureTheory.Measure α} [NormedAddCommGroup F] {f : αF} (hp_ne_zero : p 0) (hp_ne_top : p ) :
            MeasureTheory.eLpNorm f p μ < ∫⁻ (a : α), f a‖₊ ^ p.toRealμ <

            Alias of MeasureTheory.eLpNorm_lt_top_iff_lintegral_rpow_nnnorm_lt_top.

            @[simp]
            theorem MeasureTheory.eLpNorm'_exponent_zero {α : Type u_1} {F : Type u_4} {m0 : MeasurableSpace α} {μ : MeasureTheory.Measure α} [NormedAddCommGroup F] {f : αF} :
            @[deprecated MeasureTheory.eLpNorm'_exponent_zero]
            theorem MeasureTheory.snorm'_exponent_zero {α : Type u_1} {F : Type u_4} {m0 : MeasurableSpace α} {μ : MeasureTheory.Measure α} [NormedAddCommGroup F] {f : αF} :

            Alias of MeasureTheory.eLpNorm'_exponent_zero.

            @[simp]
            theorem MeasureTheory.eLpNorm_exponent_zero {α : Type u_1} {F : Type u_4} {m0 : MeasurableSpace α} {μ : MeasureTheory.Measure α} [NormedAddCommGroup F] {f : αF} :
            @[deprecated MeasureTheory.eLpNorm_exponent_zero]
            theorem MeasureTheory.snorm_exponent_zero {α : Type u_1} {F : Type u_4} {m0 : MeasurableSpace α} {μ : MeasureTheory.Measure α} [NormedAddCommGroup F] {f : αF} :

            Alias of MeasureTheory.eLpNorm_exponent_zero.

            @[simp]
            theorem MeasureTheory.eLpNorm'_zero {α : Type u_1} {F : Type u_4} {m0 : MeasurableSpace α} {q : } {μ : MeasureTheory.Measure α} [NormedAddCommGroup F] (hp0_lt : 0 < q) :
            @[deprecated MeasureTheory.eLpNorm'_zero]
            theorem MeasureTheory.snorm'_zero {α : Type u_1} {F : Type u_4} {m0 : MeasurableSpace α} {q : } {μ : MeasureTheory.Measure α} [NormedAddCommGroup F] (hp0_lt : 0 < q) :

            Alias of MeasureTheory.eLpNorm'_zero.

            @[simp]
            theorem MeasureTheory.eLpNorm'_zero' {α : Type u_1} {F : Type u_4} {m0 : MeasurableSpace α} {q : } {μ : MeasureTheory.Measure α} [NormedAddCommGroup F] (hq0_ne : q 0) (hμ : μ 0) :
            @[deprecated MeasureTheory.eLpNorm'_zero']
            theorem MeasureTheory.snorm'_zero' {α : Type u_1} {F : Type u_4} {m0 : MeasurableSpace α} {q : } {μ : MeasureTheory.Measure α} [NormedAddCommGroup F] (hq0_ne : q 0) (hμ : μ 0) :

            Alias of MeasureTheory.eLpNorm'_zero'.

            @[deprecated MeasureTheory.eLpNormEssSup_zero]

            Alias of MeasureTheory.eLpNormEssSup_zero.

            @[simp]
            @[deprecated MeasureTheory.eLpNorm_zero]
            theorem MeasureTheory.snorm_zero {α : Type u_1} {F : Type u_4} {m0 : MeasurableSpace α} {p : ENNReal} {μ : MeasureTheory.Measure α} [NormedAddCommGroup F] :

            Alias of MeasureTheory.eLpNorm_zero.

            @[simp]
            theorem MeasureTheory.eLpNorm_zero' {α : Type u_1} {F : Type u_4} {m0 : MeasurableSpace α} {p : ENNReal} {μ : MeasureTheory.Measure α} [NormedAddCommGroup F] :
            MeasureTheory.eLpNorm (fun (x : α) => 0) p μ = 0
            @[deprecated MeasureTheory.eLpNorm_zero']
            theorem MeasureTheory.snorm_zero' {α : Type u_1} {F : Type u_4} {m0 : MeasurableSpace α} {p : ENNReal} {μ : MeasureTheory.Measure α} [NormedAddCommGroup F] :
            MeasureTheory.eLpNorm (fun (x : α) => 0) p μ = 0

            Alias of MeasureTheory.eLpNorm_zero'.

            theorem MeasureTheory.zero_mem_ℒp' {α : Type u_1} {E : Type u_3} {m0 : MeasurableSpace α} {p : ENNReal} {μ : MeasureTheory.Measure α} [NormedAddCommGroup E] :
            MeasureTheory.Memℒp (fun (x : α) => 0) p μ
            theorem MeasureTheory.eLpNorm'_measure_zero_of_pos {α : Type u_1} {F : Type u_4} {q : } [NormedAddCommGroup F] [MeasurableSpace α] {f : αF} (hq_pos : 0 < q) :
            @[deprecated MeasureTheory.eLpNorm'_measure_zero_of_pos]
            theorem MeasureTheory.snorm'_measure_zero_of_pos {α : Type u_1} {F : Type u_4} {q : } [NormedAddCommGroup F] [MeasurableSpace α] {f : αF} (hq_pos : 0 < q) :

            Alias of MeasureTheory.eLpNorm'_measure_zero_of_pos.

            @[deprecated MeasureTheory.eLpNorm'_measure_zero_of_exponent_zero]

            Alias of MeasureTheory.eLpNorm'_measure_zero_of_exponent_zero.

            theorem MeasureTheory.eLpNorm'_measure_zero_of_neg {α : Type u_1} {F : Type u_4} {q : } [NormedAddCommGroup F] [MeasurableSpace α] {f : αF} (hq_neg : q < 0) :
            @[deprecated MeasureTheory.eLpNorm'_measure_zero_of_neg]
            theorem MeasureTheory.snorm'_measure_zero_of_neg {α : Type u_1} {F : Type u_4} {q : } [NormedAddCommGroup F] [MeasurableSpace α] {f : αF} (hq_neg : q < 0) :

            Alias of MeasureTheory.eLpNorm'_measure_zero_of_neg.

            @[deprecated MeasureTheory.eLpNormEssSup_measure_zero]

            Alias of MeasureTheory.eLpNormEssSup_measure_zero.

            @[simp]
            theorem MeasureTheory.eLpNorm_measure_zero {α : Type u_1} {F : Type u_4} {p : ENNReal} [NormedAddCommGroup F] [MeasurableSpace α] {f : αF} :
            @[deprecated MeasureTheory.eLpNorm_measure_zero]
            theorem MeasureTheory.snorm_measure_zero {α : Type u_1} {F : Type u_4} {p : ENNReal} [NormedAddCommGroup F] [MeasurableSpace α] {f : αF} :

            Alias of MeasureTheory.eLpNorm_measure_zero.

            @[simp]
            theorem MeasureTheory.eLpNorm'_neg {α : Type u_1} {F : Type u_4} {m0 : MeasurableSpace α} [NormedAddCommGroup F] (f : αF) (q : ) (μ : MeasureTheory.Measure α) :
            @[deprecated MeasureTheory.eLpNorm'_neg]
            theorem MeasureTheory.snorm'_neg {α : Type u_1} {F : Type u_4} {m0 : MeasurableSpace α} [NormedAddCommGroup F] (f : αF) (q : ) (μ : MeasureTheory.Measure α) :

            Alias of MeasureTheory.eLpNorm'_neg.

            @[simp]
            theorem MeasureTheory.eLpNorm_neg {α : Type u_1} {F : Type u_4} {m0 : MeasurableSpace α} [NormedAddCommGroup F] (f : αF) (p : ENNReal) (μ : MeasureTheory.Measure α) :
            theorem MeasureTheory.eLpNorm_sub_comm {α : Type u_1} {E : Type u_3} {m0 : MeasurableSpace α} [NormedAddCommGroup E] (f g : αE) (p : ENNReal) (μ : MeasureTheory.Measure α) :
            @[deprecated MeasureTheory.eLpNorm_neg]
            theorem MeasureTheory.snorm_neg {α : Type u_1} {F : Type u_4} {m0 : MeasurableSpace α} [NormedAddCommGroup F] (f : αF) (p : ENNReal) (μ : MeasureTheory.Measure α) :

            Alias of MeasureTheory.eLpNorm_neg.

            theorem MeasureTheory.Memℒp.neg {α : Type u_1} {E : Type u_3} {m0 : MeasurableSpace α} {p : ENNReal} {μ : MeasureTheory.Measure α} [NormedAddCommGroup E] {f : αE} (hf : MeasureTheory.Memℒp f p μ) :
            theorem MeasureTheory.memℒp_neg_iff {α : Type u_1} {E : Type u_3} {m0 : MeasurableSpace α} {p : ENNReal} {μ : MeasureTheory.Measure α} [NormedAddCommGroup E] {f : αE} :
            theorem MeasureTheory.eLpNorm_indicator_eq_restrict {α : Type u_1} {E : Type u_3} {m0 : MeasurableSpace α} {p : ENNReal} {μ : MeasureTheory.Measure α} [NormedAddCommGroup E] {f : αE} {s : Set α} (hs : MeasurableSet s) :
            MeasureTheory.eLpNorm (s.indicator f) p μ = MeasureTheory.eLpNorm f p (μ.restrict s)
            @[deprecated MeasureTheory.eLpNorm_indicator_eq_restrict]
            theorem MeasureTheory.snorm_indicator_eq_restrict {α : Type u_1} {E : Type u_3} {m0 : MeasurableSpace α} {p : ENNReal} {μ : MeasureTheory.Measure α} [NormedAddCommGroup E] {f : αE} {s : Set α} (hs : MeasurableSet s) :
            MeasureTheory.eLpNorm (s.indicator f) p μ = MeasureTheory.eLpNorm f p (μ.restrict s)

            Alias of MeasureTheory.eLpNorm_indicator_eq_restrict.

            theorem MeasureTheory.eLpNorm'_const {α : Type u_1} {F : Type u_4} {m0 : MeasurableSpace α} {q : } {μ : MeasureTheory.Measure α} [NormedAddCommGroup F] (c : F) (hq_pos : 0 < q) :
            MeasureTheory.eLpNorm' (fun (x : α) => c) q μ = c‖₊ * μ Set.univ ^ (1 / q)
            @[deprecated MeasureTheory.eLpNorm'_const]
            theorem MeasureTheory.snorm'_const {α : Type u_1} {F : Type u_4} {m0 : MeasurableSpace α} {q : } {μ : MeasureTheory.Measure α} [NormedAddCommGroup F] (c : F) (hq_pos : 0 < q) :
            MeasureTheory.eLpNorm' (fun (x : α) => c) q μ = c‖₊ * μ Set.univ ^ (1 / q)

            Alias of MeasureTheory.eLpNorm'_const.

            theorem MeasureTheory.eLpNorm'_const' {α : Type u_1} {F : Type u_4} {m0 : MeasurableSpace α} {q : } {μ : MeasureTheory.Measure α} [NormedAddCommGroup F] [MeasureTheory.IsFiniteMeasure μ] (c : F) (hc_ne_zero : c 0) (hq_ne_zero : q 0) :
            MeasureTheory.eLpNorm' (fun (x : α) => c) q μ = c‖₊ * μ Set.univ ^ (1 / q)
            @[deprecated MeasureTheory.eLpNorm'_const']
            theorem MeasureTheory.snorm'_const' {α : Type u_1} {F : Type u_4} {m0 : MeasurableSpace α} {q : } {μ : MeasureTheory.Measure α} [NormedAddCommGroup F] [MeasureTheory.IsFiniteMeasure μ] (c : F) (hc_ne_zero : c 0) (hq_ne_zero : q 0) :
            MeasureTheory.eLpNorm' (fun (x : α) => c) q μ = c‖₊ * μ Set.univ ^ (1 / q)

            Alias of MeasureTheory.eLpNorm'_const'.

            theorem MeasureTheory.eLpNormEssSup_const {α : Type u_1} {F : Type u_4} {m0 : MeasurableSpace α} {μ : MeasureTheory.Measure α} [NormedAddCommGroup F] (c : F) (hμ : μ 0) :
            MeasureTheory.eLpNormEssSup (fun (x : α) => c) μ = c‖₊
            @[deprecated MeasureTheory.eLpNormEssSup_const]
            theorem MeasureTheory.snormEssSup_const {α : Type u_1} {F : Type u_4} {m0 : MeasurableSpace α} {μ : MeasureTheory.Measure α} [NormedAddCommGroup F] (c : F) (hμ : μ 0) :
            MeasureTheory.eLpNormEssSup (fun (x : α) => c) μ = c‖₊

            Alias of MeasureTheory.eLpNormEssSup_const.

            theorem MeasureTheory.eLpNorm'_const_of_isProbabilityMeasure {α : Type u_1} {F : Type u_4} {m0 : MeasurableSpace α} {q : } {μ : MeasureTheory.Measure α} [NormedAddCommGroup F] (c : F) (hq_pos : 0 < q) [MeasureTheory.IsProbabilityMeasure μ] :
            MeasureTheory.eLpNorm' (fun (x : α) => c) q μ = c‖₊
            @[deprecated MeasureTheory.eLpNorm'_const_of_isProbabilityMeasure]
            theorem MeasureTheory.snorm'_const_of_isProbabilityMeasure {α : Type u_1} {F : Type u_4} {m0 : MeasurableSpace α} {q : } {μ : MeasureTheory.Measure α} [NormedAddCommGroup F] (c : F) (hq_pos : 0 < q) [MeasureTheory.IsProbabilityMeasure μ] :
            MeasureTheory.eLpNorm' (fun (x : α) => c) q μ = c‖₊

            Alias of MeasureTheory.eLpNorm'_const_of_isProbabilityMeasure.

            theorem MeasureTheory.eLpNorm_const {α : Type u_1} {F : Type u_4} {m0 : MeasurableSpace α} {p : ENNReal} {μ : MeasureTheory.Measure α} [NormedAddCommGroup F] (c : F) (h0 : p 0) (hμ : μ 0) :
            MeasureTheory.eLpNorm (fun (x : α) => c) p μ = c‖₊ * μ Set.univ ^ (1 / p.toReal)
            @[deprecated MeasureTheory.eLpNorm_const]
            theorem MeasureTheory.snorm_const {α : Type u_1} {F : Type u_4} {m0 : MeasurableSpace α} {p : ENNReal} {μ : MeasureTheory.Measure α} [NormedAddCommGroup F] (c : F) (h0 : p 0) (hμ : μ 0) :
            MeasureTheory.eLpNorm (fun (x : α) => c) p μ = c‖₊ * μ Set.univ ^ (1 / p.toReal)

            Alias of MeasureTheory.eLpNorm_const.

            theorem MeasureTheory.eLpNorm_const' {α : Type u_1} {F : Type u_4} {m0 : MeasurableSpace α} {p : ENNReal} {μ : MeasureTheory.Measure α} [NormedAddCommGroup F] (c : F) (h0 : p 0) (h_top : p ) :
            MeasureTheory.eLpNorm (fun (x : α) => c) p μ = c‖₊ * μ Set.univ ^ (1 / p.toReal)
            @[deprecated MeasureTheory.eLpNorm_const']
            theorem MeasureTheory.snorm_const' {α : Type u_1} {F : Type u_4} {m0 : MeasurableSpace α} {p : ENNReal} {μ : MeasureTheory.Measure α} [NormedAddCommGroup F] (c : F) (h0 : p 0) (h_top : p ) :
            MeasureTheory.eLpNorm (fun (x : α) => c) p μ = c‖₊ * μ Set.univ ^ (1 / p.toReal)

            Alias of MeasureTheory.eLpNorm_const'.

            theorem MeasureTheory.eLpNorm_const_lt_top_iff {α : Type u_1} {F : Type u_4} {m0 : MeasurableSpace α} {μ : MeasureTheory.Measure α} [NormedAddCommGroup F] {p : ENNReal} {c : F} (hp_ne_zero : p 0) (hp_ne_top : p ) :
            MeasureTheory.eLpNorm (fun (x : α) => c) p μ < c = 0 μ Set.univ <
            @[deprecated MeasureTheory.eLpNorm_const_lt_top_iff]
            theorem MeasureTheory.snorm_const_lt_top_iff {α : Type u_1} {F : Type u_4} {m0 : MeasurableSpace α} {μ : MeasureTheory.Measure α} [NormedAddCommGroup F] {p : ENNReal} {c : F} (hp_ne_zero : p 0) (hp_ne_top : p ) :
            MeasureTheory.eLpNorm (fun (x : α) => c) p μ < c = 0 μ Set.univ <

            Alias of MeasureTheory.eLpNorm_const_lt_top_iff.

            theorem MeasureTheory.memℒp_const {α : Type u_1} {E : Type u_3} {m0 : MeasurableSpace α} {p : ENNReal} {μ : MeasureTheory.Measure α} [NormedAddCommGroup E] (c : E) [MeasureTheory.IsFiniteMeasure μ] :
            MeasureTheory.Memℒp (fun (x : α) => c) p μ
            theorem MeasureTheory.memℒp_top_const {α : Type u_1} {E : Type u_3} {m0 : MeasurableSpace α} {μ : MeasureTheory.Measure α} [NormedAddCommGroup E] (c : E) :
            MeasureTheory.Memℒp (fun (x : α) => c) μ
            theorem MeasureTheory.memℒp_const_iff {α : Type u_1} {E : Type u_3} {m0 : MeasurableSpace α} {μ : MeasureTheory.Measure α} [NormedAddCommGroup E] {p : ENNReal} {c : E} (hp_ne_zero : p 0) (hp_ne_top : p ) :
            MeasureTheory.Memℒp (fun (x : α) => c) p μ c = 0 μ Set.univ <
            theorem MeasureTheory.eLpNorm'_mono_nnnorm_ae {α : Type u_1} {F : Type u_4} {G : Type u_5} {m0 : MeasurableSpace α} {q : } {μ : MeasureTheory.Measure α} [NormedAddCommGroup F] [NormedAddCommGroup G] {f : αF} {g : αG} (hq : 0 q) (h : ∀ᵐ (x : α) ∂μ, f x‖₊ g x‖₊) :
            @[deprecated MeasureTheory.eLpNorm'_mono_nnnorm_ae]
            theorem MeasureTheory.snorm'_mono_nnnorm_ae {α : Type u_1} {F : Type u_4} {G : Type u_5} {m0 : MeasurableSpace α} {q : } {μ : MeasureTheory.Measure α} [NormedAddCommGroup F] [NormedAddCommGroup G] {f : αF} {g : αG} (hq : 0 q) (h : ∀ᵐ (x : α) ∂μ, f x‖₊ g x‖₊) :

            Alias of MeasureTheory.eLpNorm'_mono_nnnorm_ae.

            theorem MeasureTheory.eLpNorm'_mono_ae {α : Type u_1} {F : Type u_4} {G : Type u_5} {m0 : MeasurableSpace α} {q : } {μ : MeasureTheory.Measure α} [NormedAddCommGroup F] [NormedAddCommGroup G] {f : αF} {g : αG} (hq : 0 q) (h : ∀ᵐ (x : α) ∂μ, f x g x) :
            @[deprecated MeasureTheory.eLpNorm'_mono_ae]
            theorem MeasureTheory.snorm'_mono_ae {α : Type u_1} {F : Type u_4} {G : Type u_5} {m0 : MeasurableSpace α} {q : } {μ : MeasureTheory.Measure α} [NormedAddCommGroup F] [NormedAddCommGroup G] {f : αF} {g : αG} (hq : 0 q) (h : ∀ᵐ (x : α) ∂μ, f x g x) :

            Alias of MeasureTheory.eLpNorm'_mono_ae.

            theorem MeasureTheory.eLpNorm'_congr_nnnorm_ae {α : Type u_1} {F : Type u_4} {m0 : MeasurableSpace α} {q : } {μ : MeasureTheory.Measure α} [NormedAddCommGroup F] {f g : αF} (hfg : ∀ᵐ (x : α) ∂μ, f x‖₊ = g x‖₊) :
            @[deprecated MeasureTheory.eLpNorm'_congr_nnnorm_ae]
            theorem MeasureTheory.snorm'_congr_nnnorm_ae {α : Type u_1} {F : Type u_4} {m0 : MeasurableSpace α} {q : } {μ : MeasureTheory.Measure α} [NormedAddCommGroup F] {f g : αF} (hfg : ∀ᵐ (x : α) ∂μ, f x‖₊ = g x‖₊) :

            Alias of MeasureTheory.eLpNorm'_congr_nnnorm_ae.

            theorem MeasureTheory.eLpNorm'_congr_norm_ae {α : Type u_1} {F : Type u_4} {m0 : MeasurableSpace α} {q : } {μ : MeasureTheory.Measure α} [NormedAddCommGroup F] {f g : αF} (hfg : ∀ᵐ (x : α) ∂μ, f x = g x) :
            @[deprecated MeasureTheory.eLpNorm'_congr_norm_ae]
            theorem MeasureTheory.snorm'_congr_norm_ae {α : Type u_1} {F : Type u_4} {m0 : MeasurableSpace α} {q : } {μ : MeasureTheory.Measure α} [NormedAddCommGroup F] {f g : αF} (hfg : ∀ᵐ (x : α) ∂μ, f x = g x) :

            Alias of MeasureTheory.eLpNorm'_congr_norm_ae.

            theorem MeasureTheory.eLpNorm'_congr_ae {α : Type u_1} {F : Type u_4} {m0 : MeasurableSpace α} {q : } {μ : MeasureTheory.Measure α} [NormedAddCommGroup F] {f g : αF} (hfg : f =ᵐ[μ] g) :
            @[deprecated MeasureTheory.eLpNorm'_congr_ae]
            theorem MeasureTheory.snorm'_congr_ae {α : Type u_1} {F : Type u_4} {m0 : MeasurableSpace α} {q : } {μ : MeasureTheory.Measure α} [NormedAddCommGroup F] {f g : αF} (hfg : f =ᵐ[μ] g) :

            Alias of MeasureTheory.eLpNorm'_congr_ae.

            @[deprecated MeasureTheory.eLpNormEssSup_congr_ae]

            Alias of MeasureTheory.eLpNormEssSup_congr_ae.

            theorem MeasureTheory.eLpNormEssSup_mono_nnnorm_ae {α : Type u_1} {F : Type u_4} {m0 : MeasurableSpace α} {μ : MeasureTheory.Measure α} [NormedAddCommGroup F] {f g : αF} (hfg : ∀ᵐ (x : α) ∂μ, f x‖₊ g x‖₊) :
            @[deprecated MeasureTheory.eLpNormEssSup_mono_nnnorm_ae]
            theorem MeasureTheory.snormEssSup_mono_nnnorm_ae {α : Type u_1} {F : Type u_4} {m0 : MeasurableSpace α} {μ : MeasureTheory.Measure α} [NormedAddCommGroup F] {f g : αF} (hfg : ∀ᵐ (x : α) ∂μ, f x‖₊ g x‖₊) :

            Alias of MeasureTheory.eLpNormEssSup_mono_nnnorm_ae.

            theorem MeasureTheory.eLpNorm_mono_nnnorm_ae {α : Type u_1} {F : Type u_4} {G : Type u_5} {m0 : MeasurableSpace α} {p : ENNReal} {μ : MeasureTheory.Measure α} [NormedAddCommGroup F] [NormedAddCommGroup G] {f : αF} {g : αG} (h : ∀ᵐ (x : α) ∂μ, f x‖₊ g x‖₊) :
            @[deprecated MeasureTheory.eLpNorm_mono_nnnorm_ae]
            theorem MeasureTheory.snorm_mono_nnnorm_ae {α : Type u_1} {F : Type u_4} {G : Type u_5} {m0 : MeasurableSpace α} {p : ENNReal} {μ : MeasureTheory.Measure α} [NormedAddCommGroup F] [NormedAddCommGroup G] {f : αF} {g : αG} (h : ∀ᵐ (x : α) ∂μ, f x‖₊ g x‖₊) :

            Alias of MeasureTheory.eLpNorm_mono_nnnorm_ae.

            theorem MeasureTheory.eLpNorm_mono_ae {α : Type u_1} {F : Type u_4} {G : Type u_5} {m0 : MeasurableSpace α} {p : ENNReal} {μ : MeasureTheory.Measure α} [NormedAddCommGroup F] [NormedAddCommGroup G] {f : αF} {g : αG} (h : ∀ᵐ (x : α) ∂μ, f x g x) :
            @[deprecated MeasureTheory.eLpNorm_mono_ae]
            theorem MeasureTheory.snorm_mono_ae {α : Type u_1} {F : Type u_4} {G : Type u_5} {m0 : MeasurableSpace α} {p : ENNReal} {μ : MeasureTheory.Measure α} [NormedAddCommGroup F] [NormedAddCommGroup G] {f : αF} {g : αG} (h : ∀ᵐ (x : α) ∂μ, f x g x) :

            Alias of MeasureTheory.eLpNorm_mono_ae.

            theorem MeasureTheory.eLpNorm_mono_ae_real {α : Type u_1} {F : Type u_4} {m0 : MeasurableSpace α} {p : ENNReal} {μ : MeasureTheory.Measure α} [NormedAddCommGroup F] {f : αF} {g : α} (h : ∀ᵐ (x : α) ∂μ, f x g x) :
            @[deprecated MeasureTheory.eLpNorm_mono_ae_real]
            theorem MeasureTheory.snorm_mono_ae_real {α : Type u_1} {F : Type u_4} {m0 : MeasurableSpace α} {p : ENNReal} {μ : MeasureTheory.Measure α} [NormedAddCommGroup F] {f : αF} {g : α} (h : ∀ᵐ (x : α) ∂μ, f x g x) :

            Alias of MeasureTheory.eLpNorm_mono_ae_real.

            theorem MeasureTheory.eLpNorm_mono_nnnorm {α : Type u_1} {F : Type u_4} {G : Type u_5} {m0 : MeasurableSpace α} {p : ENNReal} {μ : MeasureTheory.Measure α} [NormedAddCommGroup F] [NormedAddCommGroup G] {f : αF} {g : αG} (h : ∀ (x : α), f x‖₊ g x‖₊) :
            @[deprecated MeasureTheory.eLpNorm_mono_nnnorm]
            theorem MeasureTheory.snorm_mono_nnnorm {α : Type u_1} {F : Type u_4} {G : Type u_5} {m0 : MeasurableSpace α} {p : ENNReal} {μ : MeasureTheory.Measure α} [NormedAddCommGroup F] [NormedAddCommGroup G] {f : αF} {g : αG} (h : ∀ (x : α), f x‖₊ g x‖₊) :

            Alias of MeasureTheory.eLpNorm_mono_nnnorm.

            theorem MeasureTheory.eLpNorm_mono {α : Type u_1} {F : Type u_4} {G : Type u_5} {m0 : MeasurableSpace α} {p : ENNReal} {μ : MeasureTheory.Measure α} [NormedAddCommGroup F] [NormedAddCommGroup G] {f : αF} {g : αG} (h : ∀ (x : α), f x g x) :
            @[deprecated MeasureTheory.eLpNorm_mono]
            theorem MeasureTheory.snorm_mono {α : Type u_1} {F : Type u_4} {G : Type u_5} {m0 : MeasurableSpace α} {p : ENNReal} {μ : MeasureTheory.Measure α} [NormedAddCommGroup F] [NormedAddCommGroup G] {f : αF} {g : αG} (h : ∀ (x : α), f x g x) :

            Alias of MeasureTheory.eLpNorm_mono.

            theorem MeasureTheory.eLpNorm_mono_real {α : Type u_1} {F : Type u_4} {m0 : MeasurableSpace α} {p : ENNReal} {μ : MeasureTheory.Measure α} [NormedAddCommGroup F] {f : αF} {g : α} (h : ∀ (x : α), f x g x) :
            @[deprecated MeasureTheory.eLpNorm_mono_real]
            theorem MeasureTheory.snorm_mono_real {α : Type u_1} {F : Type u_4} {m0 : MeasurableSpace α} {p : ENNReal} {μ : MeasureTheory.Measure α} [NormedAddCommGroup F] {f : αF} {g : α} (h : ∀ (x : α), f x g x) :

            Alias of MeasureTheory.eLpNorm_mono_real.

            theorem MeasureTheory.eLpNormEssSup_le_of_ae_nnnorm_bound {α : Type u_1} {F : Type u_4} {m0 : MeasurableSpace α} {μ : MeasureTheory.Measure α} [NormedAddCommGroup F] {f : αF} {C : NNReal} (hfC : ∀ᵐ (x : α) ∂μ, f x‖₊ C) :
            @[deprecated MeasureTheory.eLpNormEssSup_le_of_ae_nnnorm_bound]
            theorem MeasureTheory.snormEssSup_le_of_ae_nnnorm_bound {α : Type u_1} {F : Type u_4} {m0 : MeasurableSpace α} {μ : MeasureTheory.Measure α} [NormedAddCommGroup F] {f : αF} {C : NNReal} (hfC : ∀ᵐ (x : α) ∂μ, f x‖₊ C) :

            Alias of MeasureTheory.eLpNormEssSup_le_of_ae_nnnorm_bound.

            theorem MeasureTheory.eLpNormEssSup_le_of_ae_bound {α : Type u_1} {F : Type u_4} {m0 : MeasurableSpace α} {μ : MeasureTheory.Measure α} [NormedAddCommGroup F] {f : αF} {C : } (hfC : ∀ᵐ (x : α) ∂μ, f x C) :
            @[deprecated MeasureTheory.eLpNormEssSup_le_of_ae_bound]
            theorem MeasureTheory.snormEssSup_le_of_ae_bound {α : Type u_1} {F : Type u_4} {m0 : MeasurableSpace α} {μ : MeasureTheory.Measure α} [NormedAddCommGroup F] {f : αF} {C : } (hfC : ∀ᵐ (x : α) ∂μ, f x C) :

            Alias of MeasureTheory.eLpNormEssSup_le_of_ae_bound.

            theorem MeasureTheory.eLpNormEssSup_lt_top_of_ae_nnnorm_bound {α : Type u_1} {F : Type u_4} {m0 : MeasurableSpace α} {μ : MeasureTheory.Measure α} [NormedAddCommGroup F] {f : αF} {C : NNReal} (hfC : ∀ᵐ (x : α) ∂μ, f x‖₊ C) :
            @[deprecated MeasureTheory.eLpNormEssSup_lt_top_of_ae_nnnorm_bound]
            theorem MeasureTheory.snormEssSup_lt_top_of_ae_nnnorm_bound {α : Type u_1} {F : Type u_4} {m0 : MeasurableSpace α} {μ : MeasureTheory.Measure α} [NormedAddCommGroup F] {f : αF} {C : NNReal} (hfC : ∀ᵐ (x : α) ∂μ, f x‖₊ C) :

            Alias of MeasureTheory.eLpNormEssSup_lt_top_of_ae_nnnorm_bound.

            theorem MeasureTheory.eLpNormEssSup_lt_top_of_ae_bound {α : Type u_1} {F : Type u_4} {m0 : MeasurableSpace α} {μ : MeasureTheory.Measure α} [NormedAddCommGroup F] {f : αF} {C : } (hfC : ∀ᵐ (x : α) ∂μ, f x C) :
            @[deprecated MeasureTheory.eLpNormEssSup_lt_top_of_ae_bound]
            theorem MeasureTheory.snormEssSup_lt_top_of_ae_bound {α : Type u_1} {F : Type u_4} {m0 : MeasurableSpace α} {μ : MeasureTheory.Measure α} [NormedAddCommGroup F] {f : αF} {C : } (hfC : ∀ᵐ (x : α) ∂μ, f x C) :

            Alias of MeasureTheory.eLpNormEssSup_lt_top_of_ae_bound.

            theorem MeasureTheory.eLpNorm_le_of_ae_nnnorm_bound {α : Type u_1} {F : Type u_4} {m0 : MeasurableSpace α} {p : ENNReal} {μ : MeasureTheory.Measure α} [NormedAddCommGroup F] {f : αF} {C : NNReal} (hfC : ∀ᵐ (x : α) ∂μ, f x‖₊ C) :
            MeasureTheory.eLpNorm f p μ C μ Set.univ ^ p.toReal⁻¹
            @[deprecated MeasureTheory.eLpNorm_le_of_ae_nnnorm_bound]
            theorem MeasureTheory.snorm_le_of_ae_nnnorm_bound {α : Type u_1} {F : Type u_4} {m0 : MeasurableSpace α} {p : ENNReal} {μ : MeasureTheory.Measure α} [NormedAddCommGroup F] {f : αF} {C : NNReal} (hfC : ∀ᵐ (x : α) ∂μ, f x‖₊ C) :
            MeasureTheory.eLpNorm f p μ C μ Set.univ ^ p.toReal⁻¹

            Alias of MeasureTheory.eLpNorm_le_of_ae_nnnorm_bound.

            theorem MeasureTheory.eLpNorm_le_of_ae_bound {α : Type u_1} {F : Type u_4} {m0 : MeasurableSpace α} {p : ENNReal} {μ : MeasureTheory.Measure α} [NormedAddCommGroup F] {f : αF} {C : } (hfC : ∀ᵐ (x : α) ∂μ, f x C) :
            MeasureTheory.eLpNorm f p μ μ Set.univ ^ p.toReal⁻¹ * ENNReal.ofReal C
            @[deprecated MeasureTheory.eLpNorm_le_of_ae_bound]
            theorem MeasureTheory.snorm_le_of_ae_bound {α : Type u_1} {F : Type u_4} {m0 : MeasurableSpace α} {p : ENNReal} {μ : MeasureTheory.Measure α} [NormedAddCommGroup F] {f : αF} {C : } (hfC : ∀ᵐ (x : α) ∂μ, f x C) :
            MeasureTheory.eLpNorm f p μ μ Set.univ ^ p.toReal⁻¹ * ENNReal.ofReal C

            Alias of MeasureTheory.eLpNorm_le_of_ae_bound.

            theorem MeasureTheory.eLpNorm_congr_nnnorm_ae {α : Type u_1} {F : Type u_4} {G : Type u_5} {m0 : MeasurableSpace α} {p : ENNReal} {μ : MeasureTheory.Measure α} [NormedAddCommGroup F] [NormedAddCommGroup G] {f : αF} {g : αG} (hfg : ∀ᵐ (x : α) ∂μ, f x‖₊ = g x‖₊) :
            @[deprecated MeasureTheory.eLpNorm_congr_nnnorm_ae]
            theorem MeasureTheory.snorm_congr_nnnorm_ae {α : Type u_1} {F : Type u_4} {G : Type u_5} {m0 : MeasurableSpace α} {p : ENNReal} {μ : MeasureTheory.Measure α} [NormedAddCommGroup F] [NormedAddCommGroup G] {f : αF} {g : αG} (hfg : ∀ᵐ (x : α) ∂μ, f x‖₊ = g x‖₊) :

            Alias of MeasureTheory.eLpNorm_congr_nnnorm_ae.

            theorem MeasureTheory.eLpNorm_congr_norm_ae {α : Type u_1} {F : Type u_4} {G : Type u_5} {m0 : MeasurableSpace α} {p : ENNReal} {μ : MeasureTheory.Measure α} [NormedAddCommGroup F] [NormedAddCommGroup G] {f : αF} {g : αG} (hfg : ∀ᵐ (x : α) ∂μ, f x = g x) :
            @[deprecated MeasureTheory.eLpNorm_congr_norm_ae]
            theorem MeasureTheory.snorm_congr_norm_ae {α : Type u_1} {F : Type u_4} {G : Type u_5} {m0 : MeasurableSpace α} {p : ENNReal} {μ : MeasureTheory.Measure α} [NormedAddCommGroup F] [NormedAddCommGroup G] {f : αF} {g : αG} (hfg : ∀ᵐ (x : α) ∂μ, f x = g x) :

            Alias of MeasureTheory.eLpNorm_congr_norm_ae.

            theorem MeasureTheory.eLpNorm_indicator_sub_indicator {α : Type u_1} {E : Type u_3} {m0 : MeasurableSpace α} {p : ENNReal} {μ : MeasureTheory.Measure α} [NormedAddCommGroup E] (s t : Set α) (f : αE) :
            MeasureTheory.eLpNorm (s.indicator f - t.indicator f) p μ = MeasureTheory.eLpNorm ((symmDiff s t).indicator f) p μ
            @[deprecated MeasureTheory.eLpNorm_indicator_sub_indicator]
            theorem MeasureTheory.snorm_indicator_sub_indicator {α : Type u_1} {E : Type u_3} {m0 : MeasurableSpace α} {p : ENNReal} {μ : MeasureTheory.Measure α} [NormedAddCommGroup E] (s t : Set α) (f : αE) :
            MeasureTheory.eLpNorm (s.indicator f - t.indicator f) p μ = MeasureTheory.eLpNorm ((symmDiff s t).indicator f) p μ

            Alias of MeasureTheory.eLpNorm_indicator_sub_indicator.

            @[simp]
            theorem MeasureTheory.eLpNorm'_norm {α : Type u_1} {F : Type u_4} {m0 : MeasurableSpace α} {q : } {μ : MeasureTheory.Measure α} [NormedAddCommGroup F] {f : αF} :
            MeasureTheory.eLpNorm' (fun (a : α) => f a) q μ = MeasureTheory.eLpNorm' f q μ
            @[deprecated MeasureTheory.eLpNorm'_norm]
            theorem MeasureTheory.snorm'_norm {α : Type u_1} {F : Type u_4} {m0 : MeasurableSpace α} {q : } {μ : MeasureTheory.Measure α} [NormedAddCommGroup F] {f : αF} :
            MeasureTheory.eLpNorm' (fun (a : α) => f a) q μ = MeasureTheory.eLpNorm' f q μ

            Alias of MeasureTheory.eLpNorm'_norm.

            @[simp]
            theorem MeasureTheory.eLpNorm_norm {α : Type u_1} {F : Type u_4} {m0 : MeasurableSpace α} {p : ENNReal} {μ : MeasureTheory.Measure α} [NormedAddCommGroup F] (f : αF) :
            MeasureTheory.eLpNorm (fun (x : α) => f x) p μ = MeasureTheory.eLpNorm f p μ
            @[deprecated MeasureTheory.eLpNorm_norm]
            theorem MeasureTheory.snorm_norm {α : Type u_1} {F : Type u_4} {m0 : MeasurableSpace α} {p : ENNReal} {μ : MeasureTheory.Measure α} [NormedAddCommGroup F] (f : αF) :
            MeasureTheory.eLpNorm (fun (x : α) => f x) p μ = MeasureTheory.eLpNorm f p μ

            Alias of MeasureTheory.eLpNorm_norm.

            theorem MeasureTheory.eLpNorm'_norm_rpow {α : Type u_1} {F : Type u_4} {m0 : MeasurableSpace α} {μ : MeasureTheory.Measure α} [NormedAddCommGroup F] (f : αF) (p q : ) (hq_pos : 0 < q) :
            MeasureTheory.eLpNorm' (fun (x : α) => f x ^ q) p μ = MeasureTheory.eLpNorm' f (p * q) μ ^ q
            @[deprecated MeasureTheory.eLpNorm'_norm_rpow]
            theorem MeasureTheory.snorm'_norm_rpow {α : Type u_1} {F : Type u_4} {m0 : MeasurableSpace α} {μ : MeasureTheory.Measure α} [NormedAddCommGroup F] (f : αF) (p q : ) (hq_pos : 0 < q) :
            MeasureTheory.eLpNorm' (fun (x : α) => f x ^ q) p μ = MeasureTheory.eLpNorm' f (p * q) μ ^ q

            Alias of MeasureTheory.eLpNorm'_norm_rpow.

            theorem MeasureTheory.eLpNorm_norm_rpow {α : Type u_1} {F : Type u_4} {m0 : MeasurableSpace α} {p : ENNReal} {q : } {μ : MeasureTheory.Measure α} [NormedAddCommGroup F] (f : αF) (hq_pos : 0 < q) :
            MeasureTheory.eLpNorm (fun (x : α) => f x ^ q) p μ = MeasureTheory.eLpNorm f (p * ENNReal.ofReal q) μ ^ q
            @[deprecated MeasureTheory.eLpNorm_norm_rpow]
            theorem MeasureTheory.snorm_norm_rpow {α : Type u_1} {F : Type u_4} {m0 : MeasurableSpace α} {p : ENNReal} {q : } {μ : MeasureTheory.Measure α} [NormedAddCommGroup F] (f : αF) (hq_pos : 0 < q) :
            MeasureTheory.eLpNorm (fun (x : α) => f x ^ q) p μ = MeasureTheory.eLpNorm f (p * ENNReal.ofReal q) μ ^ q

            Alias of MeasureTheory.eLpNorm_norm_rpow.

            theorem MeasureTheory.eLpNorm_congr_ae {α : Type u_1} {F : Type u_4} {m0 : MeasurableSpace α} {p : ENNReal} {μ : MeasureTheory.Measure α} [NormedAddCommGroup F] {f g : αF} (hfg : f =ᵐ[μ] g) :
            @[deprecated MeasureTheory.eLpNorm_congr_ae]
            theorem MeasureTheory.snorm_congr_ae {α : Type u_1} {F : Type u_4} {m0 : MeasurableSpace α} {p : ENNReal} {μ : MeasureTheory.Measure α} [NormedAddCommGroup F] {f g : αF} (hfg : f =ᵐ[μ] g) :

            Alias of MeasureTheory.eLpNorm_congr_ae.

            theorem MeasureTheory.memℒp_congr_ae {α : Type u_1} {E : Type u_3} {m0 : MeasurableSpace α} {p : ENNReal} {μ : MeasureTheory.Measure α} [NormedAddCommGroup E] {f g : αE} (hfg : f =ᵐ[μ] g) :
            theorem MeasureTheory.Memℒp.ae_eq {α : Type u_1} {E : Type u_3} {m0 : MeasurableSpace α} {p : ENNReal} {μ : MeasureTheory.Measure α} [NormedAddCommGroup E] {f g : αE} (hfg : f =ᵐ[μ] g) (hf_Lp : MeasureTheory.Memℒp f p μ) :
            theorem MeasureTheory.Memℒp.of_le {α : Type u_1} {E : Type u_3} {F : Type u_4} {m0 : MeasurableSpace α} {p : ENNReal} {μ : MeasureTheory.Measure α} [NormedAddCommGroup E] [NormedAddCommGroup F] {f : αE} {g : αF} (hg : MeasureTheory.Memℒp g p μ) (hf : MeasureTheory.AEStronglyMeasurable f μ) (hfg : ∀ᵐ (x : α) ∂μ, f x g x) :
            theorem MeasureTheory.Memℒp.mono {α : Type u_1} {E : Type u_3} {F : Type u_4} {m0 : MeasurableSpace α} {p : ENNReal} {μ : MeasureTheory.Measure α} [NormedAddCommGroup E] [NormedAddCommGroup F] {f : αE} {g : αF} (hg : MeasureTheory.Memℒp g p μ) (hf : MeasureTheory.AEStronglyMeasurable f μ) (hfg : ∀ᵐ (x : α) ∂μ, f x g x) :

            Alias of MeasureTheory.Memℒp.of_le.

            theorem MeasureTheory.Memℒp.mono' {α : Type u_1} {E : Type u_3} {m0 : MeasurableSpace α} {p : ENNReal} {μ : MeasureTheory.Measure α} [NormedAddCommGroup E] {f : αE} {g : α} (hg : MeasureTheory.Memℒp g p μ) (hf : MeasureTheory.AEStronglyMeasurable f μ) (h : ∀ᵐ (a : α) ∂μ, f a g a) :
            theorem MeasureTheory.Memℒp.congr_norm {α : Type u_1} {E : Type u_3} {F : Type u_4} {m0 : MeasurableSpace α} {p : ENNReal} {μ : MeasureTheory.Measure α} [NormedAddCommGroup E] [NormedAddCommGroup F] {f : αE} {g : αF} (hf : MeasureTheory.Memℒp f p μ) (hg : MeasureTheory.AEStronglyMeasurable g μ) (h : ∀ᵐ (a : α) ∂μ, f a = g a) :
            theorem MeasureTheory.memℒp_congr_norm {α : Type u_1} {E : Type u_3} {F : Type u_4} {m0 : MeasurableSpace α} {p : ENNReal} {μ : MeasureTheory.Measure α} [NormedAddCommGroup E] [NormedAddCommGroup F] {f : αE} {g : αF} (hf : MeasureTheory.AEStronglyMeasurable f μ) (hg : MeasureTheory.AEStronglyMeasurable g μ) (h : ∀ᵐ (a : α) ∂μ, f a = g a) :
            theorem MeasureTheory.memℒp_top_of_bound {α : Type u_1} {E : Type u_3} {m0 : MeasurableSpace α} {μ : MeasureTheory.Measure α} [NormedAddCommGroup E] {f : αE} (hf : MeasureTheory.AEStronglyMeasurable f μ) (C : ) (hfC : ∀ᵐ (x : α) ∂μ, f x C) :
            theorem MeasureTheory.Memℒp.of_bound {α : Type u_1} {E : Type u_3} {m0 : MeasurableSpace α} {p : ENNReal} {μ : MeasureTheory.Measure α} [NormedAddCommGroup E] [MeasureTheory.IsFiniteMeasure μ] {f : αE} (hf : MeasureTheory.AEStronglyMeasurable f μ) (C : ) (hfC : ∀ᵐ (x : α) ∂μ, f x C) :
            theorem MeasureTheory.memℒp_of_bounded {α : Type u_1} {m0 : MeasurableSpace α} {μ : MeasureTheory.Measure α} [MeasureTheory.IsFiniteMeasure μ] {a b : } {f : α} (h : ∀ᵐ (x : α) ∂μ, f x Set.Icc a b) (hX : MeasureTheory.AEStronglyMeasurable f μ) (p : ENNReal) :
            theorem MeasureTheory.eLpNorm'_mono_measure {α : Type u_1} {F : Type u_4} {m0 : MeasurableSpace α} {q : } {μ ν : MeasureTheory.Measure α} [NormedAddCommGroup F] (f : αF) (hμν : ν μ) (hq : 0 q) :
            @[deprecated MeasureTheory.eLpNorm'_mono_measure]
            theorem MeasureTheory.snorm'_mono_measure {α : Type u_1} {F : Type u_4} {m0 : MeasurableSpace α} {q : } {μ ν : MeasureTheory.Measure α} [NormedAddCommGroup F] (f : αF) (hμν : ν μ) (hq : 0 q) :

            Alias of MeasureTheory.eLpNorm'_mono_measure.

            theorem MeasureTheory.eLpNormEssSup_mono_measure {α : Type u_1} {F : Type u_4} {m0 : MeasurableSpace α} {μ ν : MeasureTheory.Measure α} [NormedAddCommGroup F] (f : αF) (hμν : ν.AbsolutelyContinuous μ) :
            @[deprecated MeasureTheory.eLpNormEssSup_mono_measure]
            theorem MeasureTheory.snormEssSup_mono_measure {α : Type u_1} {F : Type u_4} {m0 : MeasurableSpace α} {μ ν : MeasureTheory.Measure α} [NormedAddCommGroup F] (f : αF) (hμν : ν.AbsolutelyContinuous μ) :

            Alias of MeasureTheory.eLpNormEssSup_mono_measure.

            theorem MeasureTheory.eLpNorm_mono_measure {α : Type u_1} {F : Type u_4} {m0 : MeasurableSpace α} {p : ENNReal} {μ ν : MeasureTheory.Measure α} [NormedAddCommGroup F] (f : αF) (hμν : ν μ) :
            @[deprecated MeasureTheory.eLpNorm_mono_measure]
            theorem MeasureTheory.snorm_mono_measure {α : Type u_1} {F : Type u_4} {m0 : MeasurableSpace α} {p : ENNReal} {μ ν : MeasureTheory.Measure α} [NormedAddCommGroup F] (f : αF) (hμν : ν μ) :

            Alias of MeasureTheory.eLpNorm_mono_measure.

            theorem MeasureTheory.Memℒp.mono_measure {α : Type u_1} {E : Type u_3} {m0 : MeasurableSpace α} {p : ENNReal} {μ ν : MeasureTheory.Measure α} [NormedAddCommGroup E] {f : αE} (hμν : ν μ) (hf : MeasureTheory.Memℒp f p μ) :
            theorem MeasureTheory.eLpNorm_restrict_le {α : Type u_1} {F : Type u_4} {m0 : MeasurableSpace α} [NormedAddCommGroup F] (f : αF) (p : ENNReal) (μ : MeasureTheory.Measure α) (s : Set α) :
            @[deprecated MeasureTheory.eLpNorm_restrict_le]
            theorem MeasureTheory.snorm_restrict_le {α : Type u_1} {F : Type u_4} {m0 : MeasurableSpace α} [NormedAddCommGroup F] (f : αF) (p : ENNReal) (μ : MeasureTheory.Measure α) (s : Set α) :

            Alias of MeasureTheory.eLpNorm_restrict_le.

            theorem MeasureTheory.eLpNorm_restrict_eq_of_support_subset {α : Type u_1} {F : Type u_4} {m0 : MeasurableSpace α} {p : ENNReal} {μ : MeasureTheory.Measure α} [NormedAddCommGroup F] {s : Set α} {f : αF} (hsf : Function.support f s) :
            MeasureTheory.eLpNorm f p (μ.restrict s) = MeasureTheory.eLpNorm f p μ

            For a function f with support in s, the Lᵖ norms of f with respect to μ and μ.restrict s are the same.

            @[deprecated MeasureTheory.eLpNorm_restrict_eq_of_support_subset]
            theorem MeasureTheory.snorm_restrict_eq_of_support_subset {α : Type u_1} {F : Type u_4} {m0 : MeasurableSpace α} {p : ENNReal} {μ : MeasureTheory.Measure α} [NormedAddCommGroup F] {s : Set α} {f : αF} (hsf : Function.support f s) :
            MeasureTheory.eLpNorm f p (μ.restrict s) = MeasureTheory.eLpNorm f p μ

            Alias of MeasureTheory.eLpNorm_restrict_eq_of_support_subset.


            For a function f with support in s, the Lᵖ norms of f with respect to μ and μ.restrict s are the same.

            theorem MeasureTheory.Memℒp.restrict {α : Type u_1} {E : Type u_3} {m0 : MeasurableSpace α} {p : ENNReal} {μ : MeasureTheory.Measure α} [NormedAddCommGroup E] (s : Set α) {f : αE} (hf : MeasureTheory.Memℒp f p μ) :
            MeasureTheory.Memℒp f p (μ.restrict s)
            theorem MeasureTheory.eLpNorm'_smul_measure {α : Type u_1} {F : Type u_4} {m0 : MeasurableSpace α} {μ : MeasureTheory.Measure α} [NormedAddCommGroup F] {p : } (hp : 0 p) {f : αF} (c : ENNReal) :
            @[deprecated MeasureTheory.eLpNorm'_smul_measure]
            theorem MeasureTheory.snorm'_smul_measure {α : Type u_1} {F : Type u_4} {m0 : MeasurableSpace α} {μ : MeasureTheory.Measure α} [NormedAddCommGroup F] {p : } (hp : 0 p) {f : αF} (c : ENNReal) :

            Alias of MeasureTheory.eLpNorm'_smul_measure.

            @[deprecated MeasureTheory.eLpNormEssSup_smul_measure]

            Alias of MeasureTheory.eLpNormEssSup_smul_measure.

            @[deprecated _private.Mathlib.MeasureTheory.Function.LpSeminorm.Basic.0.MeasureTheory.eLpNorm_smul_measure_of_ne_zero_of_ne_top]
            theorem MeasureTheory.snorm_smul_measure_of_ne_zero_of_ne_top {α : Type u_1} {F : Type u_4} {m0 : MeasurableSpace α} {μ : MeasureTheory.Measure α} [NormedAddCommGroup F] {p : ENNReal} (hp_ne_zero : p 0) (hp_ne_top : p ) {f : αF} (c : ENNReal) :
            MeasureTheory.eLpNorm f p (c μ) = c ^ (1 / p).toReal MeasureTheory.eLpNorm f p μ

            Alias of _private.Mathlib.MeasureTheory.Function.LpSeminorm.Basic.0.MeasureTheory.eLpNorm_smul_measure_of_ne_zero_of_ne_top.


            Use eLpNorm_smul_measure_of_ne_top instead.

            theorem MeasureTheory.eLpNorm_smul_measure_of_ne_zero {α : Type u_1} {F : Type u_4} {m0 : MeasurableSpace α} [NormedAddCommGroup F] {c : ENNReal} (hc : c 0) (f : αF) (p : ENNReal) (μ : MeasureTheory.Measure α) :
            MeasureTheory.eLpNorm f p (c μ) = c ^ (1 / p).toReal MeasureTheory.eLpNorm f p μ

            See eLpNorm_smul_measure_of_ne_zero' for a version with scalar multiplication by ℝ≥0.

            @[deprecated MeasureTheory.eLpNorm_smul_measure_of_ne_zero]
            theorem MeasureTheory.snorm_smul_measure_of_ne_zero {α : Type u_1} {F : Type u_4} {m0 : MeasurableSpace α} [NormedAddCommGroup F] {c : ENNReal} (hc : c 0) (f : αF) (p : ENNReal) (μ : MeasureTheory.Measure α) :
            MeasureTheory.eLpNorm f p (c μ) = c ^ (1 / p).toReal MeasureTheory.eLpNorm f p μ

            Alias of MeasureTheory.eLpNorm_smul_measure_of_ne_zero.


            See eLpNorm_smul_measure_of_ne_zero' for a version with scalar multiplication by ℝ≥0.

            theorem MeasureTheory.eLpNorm_smul_measure_of_ne_zero' {α : Type u_1} {F : Type u_4} {m0 : MeasurableSpace α} [NormedAddCommGroup F] {c : NNReal} (hc : c 0) (f : αF) (p : ENNReal) (μ : MeasureTheory.Measure α) :

            See eLpNorm_smul_measure_of_ne_zero for a version with scalar multiplication by ℝ≥0∞.

            theorem MeasureTheory.eLpNorm_smul_measure_of_ne_top {α : Type u_1} {F : Type u_4} {m0 : MeasurableSpace α} {μ : MeasureTheory.Measure α} [NormedAddCommGroup F] {p : ENNReal} (hp_ne_top : p ) (f : αF) (c : ENNReal) :
            MeasureTheory.eLpNorm f p (c μ) = c ^ (1 / p).toReal MeasureTheory.eLpNorm f p μ

            See eLpNorm_smul_measure_of_ne_top' for a version with scalar multiplication by ℝ≥0.

            theorem MeasureTheory.eLpNorm_smul_measure_of_ne_top' {α : Type u_1} {F : Type u_4} {m0 : MeasurableSpace α} {p : ENNReal} {μ : MeasureTheory.Measure α} [NormedAddCommGroup F] (hp : p ) (c : NNReal) (f : αF) :

            See eLpNorm_smul_measure_of_ne_top' for a version with scalar multiplication by ℝ≥0∞.

            @[deprecated MeasureTheory.eLpNorm_smul_measure_of_ne_top]
            theorem MeasureTheory.snorm_smul_measure_of_ne_top {α : Type u_1} {F : Type u_4} {m0 : MeasurableSpace α} {μ : MeasureTheory.Measure α} [NormedAddCommGroup F] {p : ENNReal} (hp_ne_top : p ) (f : αF) (c : ENNReal) :
            MeasureTheory.eLpNorm f p (c μ) = c ^ (1 / p).toReal MeasureTheory.eLpNorm f p μ

            Alias of MeasureTheory.eLpNorm_smul_measure_of_ne_top.


            See eLpNorm_smul_measure_of_ne_top' for a version with scalar multiplication by ℝ≥0.

            @[deprecated MeasureTheory.eLpNorm_one_smul_measure]
            theorem MeasureTheory.snorm_one_smul_measure {α : Type u_1} {F : Type u_4} {m0 : MeasurableSpace α} {μ : MeasureTheory.Measure α} [NormedAddCommGroup F] {f : αF} (c : ENNReal) :

            Alias of MeasureTheory.eLpNorm_one_smul_measure.

            theorem MeasureTheory.Memℒp.of_measure_le_smul {α : Type u_1} {E : Type u_3} {m0 : MeasurableSpace α} {p : ENNReal} {μ : MeasureTheory.Measure α} [NormedAddCommGroup E] {μ' : MeasureTheory.Measure α} (c : ENNReal) (hc : c ) (hμ'_le : μ' c μ) {f : αE} (hf : MeasureTheory.Memℒp f p μ) :
            theorem MeasureTheory.Memℒp.smul_measure {α : Type u_1} {E : Type u_3} {m0 : MeasurableSpace α} {p : ENNReal} {μ : MeasureTheory.Measure α} [NormedAddCommGroup E] {f : αE} {c : ENNReal} (hf : MeasureTheory.Memℒp f p μ) (hc : c ) :
            @[deprecated MeasureTheory.eLpNorm_one_add_measure]
            theorem MeasureTheory.snorm_one_add_measure {α : Type u_1} {F : Type u_4} {m0 : MeasurableSpace α} [NormedAddCommGroup F] (f : αF) (μ ν : MeasureTheory.Measure α) :

            Alias of MeasureTheory.eLpNorm_one_add_measure.

            @[deprecated MeasureTheory.eLpNorm_le_add_measure_right]
            theorem MeasureTheory.snorm_le_add_measure_right {α : Type u_1} {F : Type u_4} {m0 : MeasurableSpace α} [NormedAddCommGroup F] (f : αF) (μ ν : MeasureTheory.Measure α) {p : ENNReal} :

            Alias of MeasureTheory.eLpNorm_le_add_measure_right.

            @[deprecated MeasureTheory.eLpNorm_le_add_measure_left]
            theorem MeasureTheory.snorm_le_add_measure_left {α : Type u_1} {F : Type u_4} {m0 : MeasurableSpace α} [NormedAddCommGroup F] (f : αF) (μ ν : MeasureTheory.Measure α) {p : ENNReal} :

            Alias of MeasureTheory.eLpNorm_le_add_measure_left.

            theorem MeasureTheory.eLpNormEssSup_eq_iSup {α : Type u_1} {E : Type u_3} {m0 : MeasurableSpace α} {μ : MeasureTheory.Measure α} [NormedAddCommGroup E] (hμ : ∀ (a : α), μ {a} 0) (f : αE) :
            MeasureTheory.eLpNormEssSup f μ = ⨆ (a : α), f a‖₊
            @[simp]
            theorem MeasureTheory.eLpNormEssSup_count {α : Type u_1} {E : Type u_3} {m0 : MeasurableSpace α} [NormedAddCommGroup E] [MeasurableSingletonClass α] (f : αE) :
            MeasureTheory.eLpNormEssSup f MeasureTheory.Measure.count = ⨆ (a : α), f a‖₊
            theorem MeasureTheory.Memℒp.left_of_add_measure {α : Type u_1} {E : Type u_3} {m0 : MeasurableSpace α} {p : ENNReal} {μ ν : MeasureTheory.Measure α} [NormedAddCommGroup E] {f : αE} (h : MeasureTheory.Memℒp f p (μ + ν)) :
            theorem MeasureTheory.Memℒp.right_of_add_measure {α : Type u_1} {E : Type u_3} {m0 : MeasurableSpace α} {p : ENNReal} {μ ν : MeasureTheory.Measure α} [NormedAddCommGroup E] {f : αE} (h : MeasureTheory.Memℒp f p (μ + ν)) :
            theorem MeasureTheory.Memℒp.norm {α : Type u_1} {E : Type u_3} {m0 : MeasurableSpace α} {p : ENNReal} {μ : MeasureTheory.Measure α} [NormedAddCommGroup E] {f : αE} (h : MeasureTheory.Memℒp f p μ) :
            MeasureTheory.Memℒp (fun (x : α) => f x) p μ
            theorem MeasureTheory.memℒp_norm_iff {α : Type u_1} {E : Type u_3} {m0 : MeasurableSpace α} {p : ENNReal} {μ : MeasureTheory.Measure α} [NormedAddCommGroup E] {f : αE} (hf : MeasureTheory.AEStronglyMeasurable f μ) :
            MeasureTheory.Memℒp (fun (x : α) => f x) p μ MeasureTheory.Memℒp f p μ
            theorem MeasureTheory.eLpNorm'_eq_zero_of_ae_zero {α : Type u_1} {F : Type u_4} {m0 : MeasurableSpace α} {q : } {μ : MeasureTheory.Measure α} [NormedAddCommGroup F] {f : αF} (hq0_lt : 0 < q) (hf_zero : f =ᵐ[μ] 0) :
            @[deprecated MeasureTheory.eLpNorm'_eq_zero_of_ae_zero]
            theorem MeasureTheory.snorm'_eq_zero_of_ae_zero {α : Type u_1} {F : Type u_4} {m0 : MeasurableSpace α} {q : } {μ : MeasureTheory.Measure α} [NormedAddCommGroup F] {f : αF} (hq0_lt : 0 < q) (hf_zero : f =ᵐ[μ] 0) :

            Alias of MeasureTheory.eLpNorm'_eq_zero_of_ae_zero.

            theorem MeasureTheory.eLpNorm'_eq_zero_of_ae_zero' {α : Type u_1} {F : Type u_4} {m0 : MeasurableSpace α} {q : } {μ : MeasureTheory.Measure α} [NormedAddCommGroup F] (hq0_ne : q 0) (hμ : μ 0) {f : αF} (hf_zero : f =ᵐ[μ] 0) :
            @[deprecated MeasureTheory.eLpNorm'_eq_zero_of_ae_zero']
            theorem MeasureTheory.snorm'_eq_zero_of_ae_zero' {α : Type u_1} {F : Type u_4} {m0 : MeasurableSpace α} {q : } {μ : MeasureTheory.Measure α} [NormedAddCommGroup F] (hq0_ne : q 0) (hμ : μ 0) {f : αF} (hf_zero : f =ᵐ[μ] 0) :

            Alias of MeasureTheory.eLpNorm'_eq_zero_of_ae_zero'.

            theorem MeasureTheory.ae_eq_zero_of_eLpNorm'_eq_zero {α : Type u_1} {E : Type u_3} {m0 : MeasurableSpace α} {q : } {μ : MeasureTheory.Measure α} [NormedAddCommGroup E] {f : αE} (hq0 : 0 q) (hf : MeasureTheory.AEStronglyMeasurable f μ) (h : MeasureTheory.eLpNorm' f q μ = 0) :
            f =ᵐ[μ] 0
            @[deprecated MeasureTheory.ae_eq_zero_of_eLpNorm'_eq_zero]
            theorem MeasureTheory.ae_eq_zero_of_snorm'_eq_zero {α : Type u_1} {E : Type u_3} {m0 : MeasurableSpace α} {q : } {μ : MeasureTheory.Measure α} [NormedAddCommGroup E] {f : αE} (hq0 : 0 q) (hf : MeasureTheory.AEStronglyMeasurable f μ) (h : MeasureTheory.eLpNorm' f q μ = 0) :
            f =ᵐ[μ] 0

            Alias of MeasureTheory.ae_eq_zero_of_eLpNorm'_eq_zero.

            theorem MeasureTheory.eLpNorm'_eq_zero_iff {α : Type u_1} {E : Type u_3} {m0 : MeasurableSpace α} {q : } {μ : MeasureTheory.Measure α} [NormedAddCommGroup E] (hq0_lt : 0 < q) {f : αE} (hf : MeasureTheory.AEStronglyMeasurable f μ) :
            @[deprecated MeasureTheory.eLpNorm'_eq_zero_iff]
            theorem MeasureTheory.snorm'_eq_zero_iff {α : Type u_1} {E : Type u_3} {m0 : MeasurableSpace α} {q : } {μ : MeasureTheory.Measure α} [NormedAddCommGroup E] (hq0_lt : 0 < q) {f : αE} (hf : MeasureTheory.AEStronglyMeasurable f μ) :

            Alias of MeasureTheory.eLpNorm'_eq_zero_iff.

            theorem MeasureTheory.coe_nnnorm_ae_le_eLpNormEssSup {α : Type u_1} {F : Type u_4} [NormedAddCommGroup F] {x✝ : MeasurableSpace α} (f : αF) (μ : MeasureTheory.Measure α) :
            ∀ᵐ (x : α) ∂μ, f x‖₊ MeasureTheory.eLpNormEssSup f μ
            @[deprecated MeasureTheory.coe_nnnorm_ae_le_eLpNormEssSup]
            theorem MeasureTheory.coe_nnnorm_ae_le_snormEssSup {α : Type u_1} {F : Type u_4} [NormedAddCommGroup F] {x✝ : MeasurableSpace α} (f : αF) (μ : MeasureTheory.Measure α) :
            ∀ᵐ (x : α) ∂μ, f x‖₊ MeasureTheory.eLpNormEssSup f μ

            Alias of MeasureTheory.coe_nnnorm_ae_le_eLpNormEssSup.

            @[simp]
            @[deprecated MeasureTheory.eLpNormEssSup_eq_zero_iff]
            theorem MeasureTheory.snormEssSup_eq_zero_iff {α : Type u_1} {F : Type u_4} {m0 : MeasurableSpace α} {μ : MeasureTheory.Measure α} [NormedAddCommGroup F] {f : αF} :

            Alias of MeasureTheory.eLpNormEssSup_eq_zero_iff.

            theorem MeasureTheory.eLpNorm_eq_zero_iff {α : Type u_1} {E : Type u_3} {m0 : MeasurableSpace α} {p : ENNReal} {μ : MeasureTheory.Measure α} [NormedAddCommGroup E] {f : αE} (hf : MeasureTheory.AEStronglyMeasurable f μ) (h0 : p 0) :
            @[deprecated MeasureTheory.eLpNorm_eq_zero_iff]
            theorem MeasureTheory.snorm_eq_zero_iff {α : Type u_1} {E : Type u_3} {m0 : MeasurableSpace α} {p : ENNReal} {μ : MeasureTheory.Measure α} [NormedAddCommGroup E] {f : αE} (hf : MeasureTheory.AEStronglyMeasurable f μ) (h0 : p 0) :

            Alias of MeasureTheory.eLpNorm_eq_zero_iff.

            theorem MeasureTheory.eLpNorm_eq_zero_of_ae_zero {α : Type u_1} {E : Type u_3} {m0 : MeasurableSpace α} {p : ENNReal} {μ : MeasureTheory.Measure α} [NormedAddCommGroup E] {f : αE} (hf : f =ᵐ[μ] 0) :
            theorem MeasureTheory.ae_le_eLpNormEssSup {α : Type u_1} {F : Type u_4} {m0 : MeasurableSpace α} {μ : MeasureTheory.Measure α} [NormedAddCommGroup F] {f : αF} :
            ∀ᵐ (y : α) ∂μ, f y‖₊ MeasureTheory.eLpNormEssSup f μ
            @[deprecated MeasureTheory.ae_le_eLpNormEssSup]
            theorem MeasureTheory.ae_le_snormEssSup {α : Type u_1} {F : Type u_4} {m0 : MeasurableSpace α} {μ : MeasureTheory.Measure α} [NormedAddCommGroup F] {f : αF} :
            ∀ᵐ (y : α) ∂μ, f y‖₊ MeasureTheory.eLpNormEssSup f μ

            Alias of MeasureTheory.ae_le_eLpNormEssSup.

            theorem MeasureTheory.meas_eLpNormEssSup_lt {α : Type u_1} {F : Type u_4} {m0 : MeasurableSpace α} {μ : MeasureTheory.Measure α} [NormedAddCommGroup F] {f : αF} :
            μ {y : α | MeasureTheory.eLpNormEssSup f μ < f y‖₊} = 0
            @[deprecated MeasureTheory.meas_eLpNormEssSup_lt]
            theorem MeasureTheory.meas_snormEssSup_lt {α : Type u_1} {F : Type u_4} {m0 : MeasurableSpace α} {μ : MeasureTheory.Measure α} [NormedAddCommGroup F] {f : αF} :
            μ {y : α | MeasureTheory.eLpNormEssSup f μ < f y‖₊} = 0

            Alias of MeasureTheory.meas_eLpNormEssSup_lt.

            @[simp]
            theorem MeasureTheory.eLpNorm_of_isEmpty {α : Type u_1} {E : Type u_3} {m0 : MeasurableSpace α} {μ : MeasureTheory.Measure α} [NormedAddCommGroup E] [IsEmpty α] (f : αE) (p : ENNReal) :
            theorem MeasureTheory.eLpNormEssSup_piecewise {α : Type u_1} {E : Type u_3} {m0 : MeasurableSpace α} {μ : MeasureTheory.Measure α} [NormedAddCommGroup E] {s : Set α} (f g : αE) [DecidablePred fun (x : α) => x s] (hs : MeasurableSet s) :
            MeasureTheory.eLpNormEssSup (s.piecewise f g) μ = MeasureTheory.eLpNormEssSup f (μ.restrict s) MeasureTheory.eLpNormEssSup g (μ.restrict s)
            @[deprecated MeasureTheory.eLpNormEssSup_piecewise]
            theorem MeasureTheory.snormEssSup_piecewise {α : Type u_1} {E : Type u_3} {m0 : MeasurableSpace α} {μ : MeasureTheory.Measure α} [NormedAddCommGroup E] {s : Set α} (f g : αE) [DecidablePred fun (x : α) => x s] (hs : MeasurableSet s) :
            MeasureTheory.eLpNormEssSup (s.piecewise f g) μ = MeasureTheory.eLpNormEssSup f (μ.restrict s) MeasureTheory.eLpNormEssSup g (μ.restrict s)

            Alias of MeasureTheory.eLpNormEssSup_piecewise.

            theorem MeasureTheory.eLpNorm_top_piecewise {α : Type u_1} {E : Type u_3} {m0 : MeasurableSpace α} {μ : MeasureTheory.Measure α} [NormedAddCommGroup E] {s : Set α} (f g : αE) [DecidablePred fun (x : α) => x s] (hs : MeasurableSet s) :
            MeasureTheory.eLpNorm (s.piecewise f g) μ = MeasureTheory.eLpNorm f (μ.restrict s) MeasureTheory.eLpNorm g (μ.restrict s)
            @[deprecated MeasureTheory.eLpNorm_top_piecewise]
            theorem MeasureTheory.snorm_top_piecewise {α : Type u_1} {E : Type u_3} {m0 : MeasurableSpace α} {μ : MeasureTheory.Measure α} [NormedAddCommGroup E] {s : Set α} (f g : αE) [DecidablePred fun (x : α) => x s] (hs : MeasurableSet s) :
            MeasureTheory.eLpNorm (s.piecewise f g) μ = MeasureTheory.eLpNorm f (μ.restrict s) MeasureTheory.eLpNorm g (μ.restrict s)

            Alias of MeasureTheory.eLpNorm_top_piecewise.

            @[deprecated MeasureTheory.eLpNormEssSup_map_measure]

            Alias of MeasureTheory.eLpNormEssSup_map_measure.

            @[deprecated MeasureTheory.eLpNorm_map_measure]
            theorem MeasureTheory.snorm_map_measure {α : Type u_1} {E : Type u_3} {m0 : MeasurableSpace α} {p : ENNReal} {μ : MeasureTheory.Measure α} [NormedAddCommGroup E] {β : Type u_6} {mβ : MeasurableSpace β} {f : αβ} {g : βE} (hg : MeasureTheory.AEStronglyMeasurable g (MeasureTheory.Measure.map f μ)) (hf : AEMeasurable f μ) :

            Alias of MeasureTheory.eLpNorm_map_measure.

            theorem MeasureTheory.Memℒp.comp_of_map {α : Type u_1} {E : Type u_3} {m0 : MeasurableSpace α} {p : ENNReal} {μ : MeasureTheory.Measure α} [NormedAddCommGroup E] {β : Type u_6} {mβ : MeasurableSpace β} {f : αβ} {g : βE} (hg : MeasureTheory.Memℒp g p (MeasureTheory.Measure.map f μ)) (hf : AEMeasurable f μ) :
            theorem MeasureTheory.eLpNorm_comp_measurePreserving {α : Type u_1} {E : Type u_3} {m0 : MeasurableSpace α} {p : ENNReal} {μ : MeasureTheory.Measure α} [NormedAddCommGroup E] {β : Type u_6} {mβ : MeasurableSpace β} {f : αβ} {g : βE} {ν : MeasureTheory.Measure β} (hg : MeasureTheory.AEStronglyMeasurable g ν) (hf : MeasureTheory.MeasurePreserving f μ ν) :
            @[deprecated MeasureTheory.eLpNorm_comp_measurePreserving]
            theorem MeasureTheory.snorm_comp_measurePreserving {α : Type u_1} {E : Type u_3} {m0 : MeasurableSpace α} {p : ENNReal} {μ : MeasureTheory.Measure α} [NormedAddCommGroup E] {β : Type u_6} {mβ : MeasurableSpace β} {f : αβ} {g : βE} {ν : MeasureTheory.Measure β} (hg : MeasureTheory.AEStronglyMeasurable g ν) (hf : MeasureTheory.MeasurePreserving f μ ν) :

            Alias of MeasureTheory.eLpNorm_comp_measurePreserving.

            theorem MeasureTheory.AEEqFun.eLpNorm_compMeasurePreserving {α : Type u_1} {E : Type u_3} {m0 : MeasurableSpace α} {p : ENNReal} {μ : MeasureTheory.Measure α} [NormedAddCommGroup E] {β : Type u_6} {mβ : MeasurableSpace β} {f : αβ} {ν : MeasureTheory.Measure β} (g : β →ₘ[ν] E) (hf : MeasureTheory.MeasurePreserving f μ ν) :
            MeasureTheory.eLpNorm (↑(g.compMeasurePreserving f hf)) p μ = MeasureTheory.eLpNorm (↑g) p ν
            @[deprecated MeasureTheory.AEEqFun.eLpNorm_compMeasurePreserving]
            theorem MeasureTheory.AEEqFun.snorm_compMeasurePreserving {α : Type u_1} {E : Type u_3} {m0 : MeasurableSpace α} {p : ENNReal} {μ : MeasureTheory.Measure α} [NormedAddCommGroup E] {β : Type u_6} {mβ : MeasurableSpace β} {f : αβ} {ν : MeasureTheory.Measure β} (g : β →ₘ[ν] E) (hf : MeasureTheory.MeasurePreserving f μ ν) :
            MeasureTheory.eLpNorm (↑(g.compMeasurePreserving f hf)) p μ = MeasureTheory.eLpNorm (↑g) p ν

            Alias of MeasureTheory.AEEqFun.eLpNorm_compMeasurePreserving.

            theorem MeasureTheory.Memℒp.comp_measurePreserving {α : Type u_1} {E : Type u_3} {m0 : MeasurableSpace α} {p : ENNReal} {μ : MeasureTheory.Measure α} [NormedAddCommGroup E] {β : Type u_6} {mβ : MeasurableSpace β} {f : αβ} {g : βE} {ν : MeasureTheory.Measure β} (hg : MeasureTheory.Memℒp g p ν) (hf : MeasureTheory.MeasurePreserving f μ ν) :
            @[deprecated MeasurableEmbedding.eLpNormEssSup_map_measure]

            Alias of MeasurableEmbedding.eLpNormEssSup_map_measure.

            theorem MeasurableEmbedding.eLpNorm_map_measure {α : Type u_1} {F : Type u_4} {m0 : MeasurableSpace α} {p : ENNReal} {μ : MeasureTheory.Measure α} [NormedAddCommGroup F] {β : Type u_6} {mβ : MeasurableSpace β} {f : αβ} {g : βF} (hf : MeasurableEmbedding f) :
            @[deprecated MeasurableEmbedding.eLpNorm_map_measure]
            theorem MeasurableEmbedding.snorm_map_measure {α : Type u_1} {F : Type u_4} {m0 : MeasurableSpace α} {p : ENNReal} {μ : MeasureTheory.Measure α} [NormedAddCommGroup F] {β : Type u_6} {mβ : MeasurableSpace β} {f : αβ} {g : βF} (hf : MeasurableEmbedding f) :

            Alias of MeasurableEmbedding.eLpNorm_map_measure.

            theorem MeasurableEmbedding.memℒp_map_measure_iff {α : Type u_1} {F : Type u_4} {m0 : MeasurableSpace α} {p : ENNReal} {μ : MeasureTheory.Measure α} [NormedAddCommGroup F] {β : Type u_6} {mβ : MeasurableSpace β} {f : αβ} {g : βF} (hf : MeasurableEmbedding f) :
            theorem MeasurableEquiv.memℒp_map_measure_iff {α : Type u_1} {F : Type u_4} {m0 : MeasurableSpace α} {p : ENNReal} {μ : MeasureTheory.Measure α} [NormedAddCommGroup F] {β : Type u_6} {mβ : MeasurableSpace β} (f : α ≃ᵐ β) {g : βF} :
            theorem MeasureTheory.eLpNorm'_le_nnreal_smul_eLpNorm'_of_ae_le_mul {α : Type u_1} {F : Type u_4} {G : Type u_5} {m0 : MeasurableSpace α} {μ : MeasureTheory.Measure α} [NormedAddCommGroup F] [NormedAddCommGroup G] {f : αF} {g : αG} {c : NNReal} (h : ∀ᵐ (x : α) ∂μ, f x‖₊ c * g x‖₊) {p : } (hp : 0 < p) :
            @[deprecated MeasureTheory.eLpNorm'_le_nnreal_smul_eLpNorm'_of_ae_le_mul]
            theorem MeasureTheory.snorm'_le_nnreal_smul_snorm'_of_ae_le_mul {α : Type u_1} {F : Type u_4} {G : Type u_5} {m0 : MeasurableSpace α} {μ : MeasureTheory.Measure α} [NormedAddCommGroup F] [NormedAddCommGroup G] {f : αF} {g : αG} {c : NNReal} (h : ∀ᵐ (x : α) ∂μ, f x‖₊ c * g x‖₊) {p : } (hp : 0 < p) :

            Alias of MeasureTheory.eLpNorm'_le_nnreal_smul_eLpNorm'_of_ae_le_mul.

            theorem MeasureTheory.eLpNormEssSup_le_nnreal_smul_eLpNormEssSup_of_ae_le_mul {α : Type u_1} {F : Type u_4} {G : Type u_5} {m0 : MeasurableSpace α} {μ : MeasureTheory.Measure α} [NormedAddCommGroup F] [NormedAddCommGroup G] {f : αF} {g : αG} {c : NNReal} (h : ∀ᵐ (x : α) ∂μ, f x‖₊ c * g x‖₊) :
            @[deprecated MeasureTheory.eLpNormEssSup_le_nnreal_smul_eLpNormEssSup_of_ae_le_mul]
            theorem MeasureTheory.snormEssSup_le_nnreal_smul_snormEssSup_of_ae_le_mul {α : Type u_1} {F : Type u_4} {G : Type u_5} {m0 : MeasurableSpace α} {μ : MeasureTheory.Measure α} [NormedAddCommGroup F] [NormedAddCommGroup G] {f : αF} {g : αG} {c : NNReal} (h : ∀ᵐ (x : α) ∂μ, f x‖₊ c * g x‖₊) :

            Alias of MeasureTheory.eLpNormEssSup_le_nnreal_smul_eLpNormEssSup_of_ae_le_mul.

            theorem MeasureTheory.eLpNorm_le_nnreal_smul_eLpNorm_of_ae_le_mul {α : Type u_1} {F : Type u_4} {G : Type u_5} {m0 : MeasurableSpace α} {μ : MeasureTheory.Measure α} [NormedAddCommGroup F] [NormedAddCommGroup G] {f : αF} {g : αG} {c : NNReal} (h : ∀ᵐ (x : α) ∂μ, f x‖₊ c * g x‖₊) (p : ENNReal) :
            @[deprecated MeasureTheory.eLpNorm_le_nnreal_smul_eLpNorm_of_ae_le_mul]
            theorem MeasureTheory.snorm_le_nnreal_smul_snorm_of_ae_le_mul {α : Type u_1} {F : Type u_4} {G : Type u_5} {m0 : MeasurableSpace α} {μ : MeasureTheory.Measure α} [NormedAddCommGroup F] [NormedAddCommGroup G] {f : αF} {g : αG} {c : NNReal} (h : ∀ᵐ (x : α) ∂μ, f x‖₊ c * g x‖₊) (p : ENNReal) :

            Alias of MeasureTheory.eLpNorm_le_nnreal_smul_eLpNorm_of_ae_le_mul.

            theorem MeasureTheory.eLpNorm_eq_zero_and_zero_of_ae_le_mul_neg {α : Type u_1} {F : Type u_4} {G : Type u_5} {m0 : MeasurableSpace α} {μ : MeasureTheory.Measure α} [NormedAddCommGroup F] [NormedAddCommGroup G] {f : αF} {g : αG} {c : } (h : ∀ᵐ (x : α) ∂μ, f x c * g x) (hc : c < 0) (p : ENNReal) :

            When c is negative, ‖f x‖ ≤ c * ‖g x‖ is nonsense and forces both f and g to have an eLpNorm of 0.

            @[deprecated MeasureTheory.eLpNorm_eq_zero_and_zero_of_ae_le_mul_neg]
            theorem MeasureTheory.snorm_eq_zero_and_zero_of_ae_le_mul_neg {α : Type u_1} {F : Type u_4} {G : Type u_5} {m0 : MeasurableSpace α} {μ : MeasureTheory.Measure α} [NormedAddCommGroup F] [NormedAddCommGroup G] {f : αF} {g : αG} {c : } (h : ∀ᵐ (x : α) ∂μ, f x c * g x) (hc : c < 0) (p : ENNReal) :

            Alias of MeasureTheory.eLpNorm_eq_zero_and_zero_of_ae_le_mul_neg.


            When c is negative, ‖f x‖ ≤ c * ‖g x‖ is nonsense and forces both f and g to have an eLpNorm of 0.

            theorem MeasureTheory.eLpNorm_le_mul_eLpNorm_of_ae_le_mul {α : Type u_1} {F : Type u_4} {G : Type u_5} {m0 : MeasurableSpace α} {μ : MeasureTheory.Measure α} [NormedAddCommGroup F] [NormedAddCommGroup G] {f : αF} {g : αG} {c : } (h : ∀ᵐ (x : α) ∂μ, f x c * g x) (p : ENNReal) :
            @[deprecated MeasureTheory.eLpNorm_le_mul_eLpNorm_of_ae_le_mul]
            theorem MeasureTheory.snorm_le_mul_snorm_of_ae_le_mul {α : Type u_1} {F : Type u_4} {G : Type u_5} {m0 : MeasurableSpace α} {μ : MeasureTheory.Measure α} [NormedAddCommGroup F] [NormedAddCommGroup G] {f : αF} {g : αG} {c : } (h : ∀ᵐ (x : α) ∂μ, f x c * g x) (p : ENNReal) :

            Alias of MeasureTheory.eLpNorm_le_mul_eLpNorm_of_ae_le_mul.

            theorem MeasureTheory.Memℒp.of_nnnorm_le_mul {α : Type u_1} {E : Type u_3} {F : Type u_4} {m0 : MeasurableSpace α} {p : ENNReal} {μ : MeasureTheory.Measure α} [NormedAddCommGroup E] [NormedAddCommGroup F] {f : αE} {g : αF} {c : NNReal} (hg : MeasureTheory.Memℒp g p μ) (hf : MeasureTheory.AEStronglyMeasurable f μ) (hfg : ∀ᵐ (x : α) ∂μ, f x‖₊ c * g x‖₊) :
            theorem MeasureTheory.Memℒp.of_le_mul {α : Type u_1} {E : Type u_3} {F : Type u_4} {m0 : MeasurableSpace α} {p : ENNReal} {μ : MeasureTheory.Measure α} [NormedAddCommGroup E] [NormedAddCommGroup F] {f : αE} {g : αF} {c : } (hg : MeasureTheory.Memℒp g p μ) (hf : MeasureTheory.AEStronglyMeasurable f μ) (hfg : ∀ᵐ (x : α) ∂μ, f x c * g x) :

            Bounded actions by normed rings #

            In this section we show inequalities on the norm.

            theorem MeasureTheory.eLpNorm'_const_smul_le {α : Type u_1} {F : Type u_4} {m0 : MeasurableSpace α} {q : } {μ : MeasureTheory.Measure α} [NormedAddCommGroup F] {𝕜 : Type u_6} [NormedRing 𝕜] [MulActionWithZero 𝕜 F] [BoundedSMul 𝕜 F] {c : 𝕜} {f : αF} (hq : 0 < q) :
            @[deprecated MeasureTheory.eLpNorm'_const_smul_le]
            theorem MeasureTheory.snorm'_const_smul_le {α : Type u_1} {F : Type u_4} {m0 : MeasurableSpace α} {q : } {μ : MeasureTheory.Measure α} [NormedAddCommGroup F] {𝕜 : Type u_6} [NormedRing 𝕜] [MulActionWithZero 𝕜 F] [BoundedSMul 𝕜 F] {c : 𝕜} {f : αF} (hq : 0 < q) :

            Alias of MeasureTheory.eLpNorm'_const_smul_le.

            @[deprecated MeasureTheory.eLpNormEssSup_const_smul_le]
            theorem MeasureTheory.snormEssSup_const_smul_le {α : Type u_1} {F : Type u_4} {m0 : MeasurableSpace α} {μ : MeasureTheory.Measure α} [NormedAddCommGroup F] {𝕜 : Type u_6} [NormedRing 𝕜] [MulActionWithZero 𝕜 F] [BoundedSMul 𝕜 F] {c : 𝕜} {f : αF} :

            Alias of MeasureTheory.eLpNormEssSup_const_smul_le.

            theorem MeasureTheory.eLpNorm_const_smul_le {α : Type u_1} {F : Type u_4} {m0 : MeasurableSpace α} {p : ENNReal} {μ : MeasureTheory.Measure α} [NormedAddCommGroup F] {𝕜 : Type u_6} [NormedRing 𝕜] [MulActionWithZero 𝕜 F] [BoundedSMul 𝕜 F] {c : 𝕜} {f : αF} :
            @[deprecated MeasureTheory.eLpNorm_const_smul_le]
            theorem MeasureTheory.snorm_const_smul_le {α : Type u_1} {F : Type u_4} {m0 : MeasurableSpace α} {p : ENNReal} {μ : MeasureTheory.Measure α} [NormedAddCommGroup F] {𝕜 : Type u_6} [NormedRing 𝕜] [MulActionWithZero 𝕜 F] [BoundedSMul 𝕜 F] {c : 𝕜} {f : αF} :

            Alias of MeasureTheory.eLpNorm_const_smul_le.

            theorem MeasureTheory.Memℒp.const_smul {α : Type u_1} {F : Type u_4} {m0 : MeasurableSpace α} {p : ENNReal} {μ : MeasureTheory.Measure α} [NormedAddCommGroup F] {𝕜 : Type u_6} [NormedRing 𝕜] [MulActionWithZero 𝕜 F] [BoundedSMul 𝕜 F] {f : αF} (hf : MeasureTheory.Memℒp f p μ) (c : 𝕜) :
            theorem MeasureTheory.Memℒp.const_mul {α : Type u_1} {m0 : MeasurableSpace α} {p : ENNReal} {μ : MeasureTheory.Measure α} {𝕜 : Type u_6} [NormedRing 𝕜] {f : α𝕜} (hf : MeasureTheory.Memℒp f p μ) (c : 𝕜) :
            MeasureTheory.Memℒp (fun (x : α) => c * f x) p μ

            Bounded actions by normed division rings #

            The inequalities in the previous section are now tight.

            theorem MeasureTheory.eLpNorm'_const_smul {α : Type u_1} {F : Type u_4} {m0 : MeasurableSpace α} {q : } {μ : MeasureTheory.Measure α} [NormedAddCommGroup F] {𝕜 : Type u_6} [NormedDivisionRing 𝕜] [Module 𝕜 F] [BoundedSMul 𝕜 F] {f : αF} (c : 𝕜) (hq_pos : 0 < q) :
            @[deprecated MeasureTheory.eLpNorm'_const_smul]
            theorem MeasureTheory.snorm'_const_smul {α : Type u_1} {F : Type u_4} {m0 : MeasurableSpace α} {q : } {μ : MeasureTheory.Measure α} [NormedAddCommGroup F] {𝕜 : Type u_6} [NormedDivisionRing 𝕜] [Module 𝕜 F] [BoundedSMul 𝕜 F] {f : αF} (c : 𝕜) (hq_pos : 0 < q) :

            Alias of MeasureTheory.eLpNorm'_const_smul.

            theorem MeasureTheory.eLpNormEssSup_const_smul {α : Type u_1} {F : Type u_4} {m0 : MeasurableSpace α} {μ : MeasureTheory.Measure α} [NormedAddCommGroup F] {𝕜 : Type u_6} [NormedDivisionRing 𝕜] [Module 𝕜 F] [BoundedSMul 𝕜 F] (c : 𝕜) (f : αF) :
            @[deprecated MeasureTheory.eLpNormEssSup_const_smul]
            theorem MeasureTheory.snormEssSup_const_smul {α : Type u_1} {F : Type u_4} {m0 : MeasurableSpace α} {μ : MeasureTheory.Measure α} [NormedAddCommGroup F] {𝕜 : Type u_6} [NormedDivisionRing 𝕜] [Module 𝕜 F] [BoundedSMul 𝕜 F] (c : 𝕜) (f : αF) :

            Alias of MeasureTheory.eLpNormEssSup_const_smul.

            theorem MeasureTheory.eLpNorm_const_smul {α : Type u_1} {F : Type u_4} {m0 : MeasurableSpace α} [NormedAddCommGroup F] {𝕜 : Type u_6} [NormedDivisionRing 𝕜] [Module 𝕜 F] [BoundedSMul 𝕜 F] (c : 𝕜) (f : αF) (p : ENNReal) (μ : MeasureTheory.Measure α) :
            @[deprecated MeasureTheory.eLpNorm_const_smul]
            theorem MeasureTheory.snorm_const_smul {α : Type u_1} {F : Type u_4} {m0 : MeasurableSpace α} [NormedAddCommGroup F] {𝕜 : Type u_6} [NormedDivisionRing 𝕜] [Module 𝕜 F] [BoundedSMul 𝕜 F] (c : 𝕜) (f : αF) (p : ENNReal) (μ : MeasureTheory.Measure α) :

            Alias of MeasureTheory.eLpNorm_const_smul.

            theorem MeasureTheory.eLpNorm_nsmul {α : Type u_1} {F : Type u_4} {m0 : MeasurableSpace α} {p : ENNReal} {μ : MeasureTheory.Measure α} [NormedAddCommGroup F] [NormedSpace F] (n : ) (f : αF) :
            theorem MeasureTheory.le_eLpNorm_of_bddBelow {α : Type u_1} {F : Type u_4} {m0 : MeasurableSpace α} {p : ENNReal} {μ : MeasureTheory.Measure α} [NormedAddCommGroup F] (hp : p 0) (hp' : p ) {f : αF} (C : NNReal) {s : Set α} (hs : MeasurableSet s) (hf : ∀ᵐ (x : α) ∂μ, x sC f x‖₊) :
            C μ s ^ (1 / p.toReal) MeasureTheory.eLpNorm f p μ
            @[deprecated MeasureTheory.le_eLpNorm_of_bddBelow]
            theorem MeasureTheory.le_snorm_of_bddBelow {α : Type u_1} {F : Type u_4} {m0 : MeasurableSpace α} {p : ENNReal} {μ : MeasureTheory.Measure α} [NormedAddCommGroup F] (hp : p 0) (hp' : p ) {f : αF} (C : NNReal) {s : Set α} (hs : MeasurableSet s) (hf : ∀ᵐ (x : α) ∂μ, x sC f x‖₊) :
            C μ s ^ (1 / p.toReal) MeasureTheory.eLpNorm f p μ

            Alias of MeasureTheory.le_eLpNorm_of_bddBelow.

            @[deprecated MeasureTheory.le_snorm_of_bddBelow]
            theorem MeasureTheory.snorm_indicator_ge_of_bdd_below {α : Type u_1} {F : Type u_4} {m0 : MeasurableSpace α} {p : ENNReal} {μ : MeasureTheory.Measure α} [NormedAddCommGroup F] (hp : p 0) (hp' : p ) {f : αF} (C : NNReal) {s : Set α} (hs : MeasurableSet s) (hf : ∀ᵐ (x : α) ∂μ, x sC f x‖₊) :
            C μ s ^ (1 / p.toReal) MeasureTheory.eLpNorm f p μ

            Alias of MeasureTheory.le_eLpNorm_of_bddBelow.


            Alias of MeasureTheory.le_eLpNorm_of_bddBelow.

            @[simp]
            theorem MeasureTheory.eLpNorm_conj {α : Type u_1} {m0 : MeasurableSpace α} {𝕜 : Type u_6} [RCLike 𝕜] (f : α𝕜) (p : ENNReal) (μ : MeasureTheory.Measure α) :
            theorem MeasureTheory.Memℒp.re {α : Type u_1} {m0 : MeasurableSpace α} {p : ENNReal} {μ : MeasureTheory.Measure α} {𝕜 : Type u_6} [RCLike 𝕜] {f : α𝕜} (hf : MeasureTheory.Memℒp f p μ) :
            MeasureTheory.Memℒp (fun (x : α) => RCLike.re (f x)) p μ
            theorem MeasureTheory.Memℒp.im {α : Type u_1} {m0 : MeasurableSpace α} {p : ENNReal} {μ : MeasureTheory.Measure α} {𝕜 : Type u_6} [RCLike 𝕜] {f : α𝕜} (hf : MeasureTheory.Memℒp f p μ) :
            MeasureTheory.Memℒp (fun (x : α) => RCLike.im (f x)) p μ
            theorem MeasureTheory.ae_bdd_liminf_atTop_rpow_of_eLpNorm_bdd {α : Type u_1} {E : Type u_3} {m0 : MeasurableSpace α} {μ : MeasureTheory.Measure α} [NormedAddCommGroup E] [MeasurableSpace E] [OpensMeasurableSpace E] {R : NNReal} {p : ENNReal} {f : αE} (hfmeas : ∀ (n : ), Measurable (f n)) (hbdd : ∀ (n : ), MeasureTheory.eLpNorm (f n) p μ R) :
            ∀ᵐ (x : α) ∂μ, Filter.liminf (fun (n : ) => f n x‖₊ ^ p.toReal) Filter.atTop <
            @[deprecated MeasureTheory.ae_bdd_liminf_atTop_rpow_of_eLpNorm_bdd]
            theorem MeasureTheory.ae_bdd_liminf_atTop_rpow_of_snorm_bdd {α : Type u_1} {E : Type u_3} {m0 : MeasurableSpace α} {μ : MeasureTheory.Measure α} [NormedAddCommGroup E] [MeasurableSpace E] [OpensMeasurableSpace E] {R : NNReal} {p : ENNReal} {f : αE} (hfmeas : ∀ (n : ), Measurable (f n)) (hbdd : ∀ (n : ), MeasureTheory.eLpNorm (f n) p μ R) :
            ∀ᵐ (x : α) ∂μ, Filter.liminf (fun (n : ) => f n x‖₊ ^ p.toReal) Filter.atTop <

            Alias of MeasureTheory.ae_bdd_liminf_atTop_rpow_of_eLpNorm_bdd.

            theorem MeasureTheory.ae_bdd_liminf_atTop_of_eLpNorm_bdd {α : Type u_1} {E : Type u_3} {m0 : MeasurableSpace α} {μ : MeasureTheory.Measure α} [NormedAddCommGroup E] [MeasurableSpace E] [OpensMeasurableSpace E] {R : NNReal} {p : ENNReal} (hp : p 0) {f : αE} (hfmeas : ∀ (n : ), Measurable (f n)) (hbdd : ∀ (n : ), MeasureTheory.eLpNorm (f n) p μ R) :
            ∀ᵐ (x : α) ∂μ, Filter.liminf (fun (n : ) => f n x‖₊) Filter.atTop <
            @[deprecated MeasureTheory.ae_bdd_liminf_atTop_of_eLpNorm_bdd]
            theorem MeasureTheory.ae_bdd_liminf_atTop_of_snorm_bdd {α : Type u_1} {E : Type u_3} {m0 : MeasurableSpace α} {μ : MeasureTheory.Measure α} [NormedAddCommGroup E] [MeasurableSpace E] [OpensMeasurableSpace E] {R : NNReal} {p : ENNReal} (hp : p 0) {f : αE} (hfmeas : ∀ (n : ), Measurable (f n)) (hbdd : ∀ (n : ), MeasureTheory.eLpNorm (f n) p μ R) :
            ∀ᵐ (x : α) ∂μ, Filter.liminf (fun (n : ) => f n x‖₊) Filter.atTop <

            Alias of MeasureTheory.ae_bdd_liminf_atTop_of_eLpNorm_bdd.

            A continuous function with compact support belongs to L^∞. See Continuous.memℒp_of_hasCompactSupport for a version for L^p.

            theorem MeasureTheory.Memℒp.exists_eLpNorm_indicator_compl_lt {α : Type u_1} {m0 : MeasurableSpace α} {p : ENNReal} {μ : MeasureTheory.Measure α} {β : Type u_6} [NormedAddCommGroup β] (hp_top : p ) {f : αβ} (hf : MeasureTheory.Memℒp f p μ) {ε : ENNReal} (hε : ε 0) :
            ∃ (s : Set α), MeasurableSet s μ s < MeasureTheory.eLpNorm (s.indicator f) p μ < ε

            A single function that is Memℒp f p μ is tight with respect to μ.

            @[deprecated MeasureTheory.Memℒp.exists_eLpNorm_indicator_compl_lt]
            theorem MeasureTheory.Memℒp.exists_snorm_indicator_compl_lt {α : Type u_1} {m0 : MeasurableSpace α} {p : ENNReal} {μ : MeasureTheory.Measure α} {β : Type u_6} [NormedAddCommGroup β] (hp_top : p ) {f : αβ} (hf : MeasureTheory.Memℒp f p μ) {ε : ENNReal} (hε : ε 0) :
            ∃ (s : Set α), MeasurableSet s μ s < MeasureTheory.eLpNorm (s.indicator f) p μ < ε

            Alias of MeasureTheory.Memℒp.exists_eLpNorm_indicator_compl_lt.


            A single function that is Memℒp f p μ is tight with respect to μ.