Evaluation of polynomials and degrees #
This file contains results on the interaction of Polynomial.eval
and Polynomial.degree
.
theorem
Polynomial.eval₂_eq_sum_range
{R : Type u}
{S : Type v}
[Semiring R]
{p : Polynomial R}
[Semiring S]
(f : R →+* S)
(x : S)
:
Polynomial.eval₂ f x p = ∑ i ∈ Finset.range (p.natDegree + 1), f (p.coeff i) * x ^ i
theorem
Polynomial.eval₂_eq_sum_range'
{R : Type u}
{S : Type v}
[Semiring R]
[Semiring S]
(f : R →+* S)
{p : Polynomial R}
{n : ℕ}
(hn : p.natDegree < n)
(x : S)
:
Polynomial.eval₂ f x p = ∑ i ∈ Finset.range n, f (p.coeff i) * x ^ i
theorem
Polynomial.eval_eq_sum_range
{R : Type u}
[Semiring R]
{p : Polynomial R}
(x : R)
:
Polynomial.eval x p = ∑ i ∈ Finset.range (p.natDegree + 1), p.coeff i * x ^ i
theorem
Polynomial.eval_eq_sum_range'
{R : Type u}
[Semiring R]
{p : Polynomial R}
{n : ℕ}
(hn : p.natDegree < n)
(x : R)
:
Polynomial.eval x p = ∑ i ∈ Finset.range n, p.coeff i * x ^ i
theorem
Polynomial.eval_monomial_one_add_sub
{S : Type v}
[CommRing S]
(d : ℕ)
(y : S)
:
Polynomial.eval (1 + y) ((Polynomial.monomial d) (↑d + 1)) - Polynomial.eval y ((Polynomial.monomial d) (↑d + 1)) = ∑ x_1 ∈ Finset.range (d + 1), ↑((d + 1).choose x_1) * (↑x_1 * y ^ (x_1 - 1))
A reformulation of the expansion of (1 + y)^d: $$(d + 1) (1 + y)^d - (d + 1)y^d = \sum_{i = 0}^d {d + 1 \choose i} \cdot i \cdot y^{i - 1}.$$
theorem
Polynomial.coeff_comp_degree_mul_degree
{R : Type u}
[Semiring R]
{p q : Polynomial R}
(hqd0 : q.natDegree ≠ 0)
:
@[simp]
theorem
Polynomial.comp_C_mul_X_coeff
{R : Type u}
[Semiring R]
{p : Polynomial R}
{r : R}
{n : ℕ}
:
(p.comp (Polynomial.C r * Polynomial.X)).coeff n = p.coeff n * r ^ n
theorem
Polynomial.comp_C_mul_X_eq_zero_iff
{R : Type u}
[Semiring R]
{p : Polynomial R}
{r : R}
(hr : r ∈ nonZeroDivisors R)
:
p.comp (Polynomial.C r * Polynomial.X) = 0 ↔ p = 0
def
Polynomial.mapEquiv
{R : Type u}
{S : Type v}
[Semiring R]
[Semiring S]
(e : R ≃+* S)
:
Polynomial R ≃+* Polynomial S
If R
and S
are isomorphic, then so are their polynomial rings.
Equations
- Polynomial.mapEquiv e = RingEquiv.ofHomInv (Polynomial.mapRingHom ↑e) (Polynomial.mapRingHom ↑e.symm) ⋯ ⋯
Instances For
@[simp]
theorem
Polynomial.mapEquiv_symm_apply
{R : Type u}
{S : Type v}
[Semiring R]
[Semiring S]
(e : R ≃+* S)
(a : Polynomial S)
:
(Polynomial.mapEquiv e).symm a = Polynomial.map (↑e.symm) a
@[simp]
theorem
Polynomial.mapEquiv_apply
{R : Type u}
{S : Type v}
[Semiring R]
[Semiring S]
(e : R ≃+* S)
(a : Polynomial R)
:
(Polynomial.mapEquiv e) a = Polynomial.map (↑e) a
theorem
Polynomial.map_monic_eq_zero_iff
{R : Type u}
{S : Type v}
[Semiring R]
[Semiring S]
{f : R →+* S}
{p : Polynomial R}
(hp : p.Monic)
:
Polynomial.map f p = 0 ↔ ∀ (x : R), f x = 0
theorem
Polynomial.map_monic_ne_zero
{R : Type u}
{S : Type v}
[Semiring R]
[Semiring S]
{f : R →+* S}
{p : Polynomial R}
(hp : p.Monic)
[Nontrivial S]
:
Polynomial.map f p ≠ 0
theorem
Polynomial.degree_map_le
{R : Type u}
{S : Type v}
[Semiring R]
[Semiring S]
{f : R →+* S}
{p : Polynomial R}
:
(Polynomial.map f p).degree ≤ p.degree
theorem
Polynomial.natDegree_map_le
{R : Type u}
{S : Type v}
[Semiring R]
[Semiring S]
{f : R →+* S}
{p : Polynomial R}
:
(Polynomial.map f p).natDegree ≤ p.natDegree
theorem
Polynomial.degree_map_lt
{R : Type u}
{S : Type v}
[Semiring R]
[Semiring S]
{f : R →+* S}
{p : Polynomial R}
(hp : f p.leadingCoeff = 0)
(hp₀ : p ≠ 0)
:
(Polynomial.map f p).degree < p.degree
theorem
Polynomial.natDegree_map_lt
{R : Type u}
{S : Type v}
[Semiring R]
[Semiring S]
{f : R →+* S}
{p : Polynomial R}
(hp : f p.leadingCoeff = 0)
(hp₀ : Polynomial.map f p ≠ 0)
:
(Polynomial.map f p).natDegree < p.natDegree
theorem
Polynomial.natDegree_map_lt'
{R : Type u}
{S : Type v}
[Semiring R]
[Semiring S]
{f : R →+* S}
{p : Polynomial R}
(hp : f p.leadingCoeff = 0)
(hp₀ : 0 < p.natDegree)
:
(Polynomial.map f p).natDegree < p.natDegree
Variant of natDegree_map_lt
that assumes 0 < natDegree p
instead of map f p ≠ 0
.
theorem
Polynomial.degree_map_eq_of_leadingCoeff_ne_zero
{R : Type u}
{S : Type v}
[Semiring R]
[Semiring S]
{p : Polynomial R}
(f : R →+* S)
(hf : f p.leadingCoeff ≠ 0)
:
(Polynomial.map f p).degree = p.degree
theorem
Polynomial.natDegree_map_of_leadingCoeff_ne_zero
{R : Type u}
{S : Type v}
[Semiring R]
[Semiring S]
{p : Polynomial R}
(f : R →+* S)
(hf : f p.leadingCoeff ≠ 0)
:
(Polynomial.map f p).natDegree = p.natDegree
theorem
Polynomial.leadingCoeff_map_of_leadingCoeff_ne_zero
{R : Type u}
{S : Type v}
[Semiring R]
[Semiring S]
{p : Polynomial R}
(f : R →+* S)
(hf : f p.leadingCoeff ≠ 0)
:
(Polynomial.map f p).leadingCoeff = f p.leadingCoeff
theorem
Polynomial.eval₂_comp
{R : Type u}
{S : Type v}
[Semiring R]
{p q : Polynomial R}
[CommSemiring S]
(f : R →+* S)
{x : S}
:
Polynomial.eval₂ f x (p.comp q) = Polynomial.eval₂ f (Polynomial.eval₂ f x q) p
@[simp]
theorem
Polynomial.iterate_comp_eval₂
{R : Type u}
{S : Type v}
[Semiring R]
{p q : Polynomial R}
[CommSemiring S]
(f : R →+* S)
(k : ℕ)
(t : S)
:
Polynomial.eval₂ f t (p.comp^[k] q) = (fun (x : S) => Polynomial.eval₂ f x p)^[k] (Polynomial.eval₂ f t q)
@[simp]
theorem
Polynomial.iterate_comp_eval
{R : Type u}
[CommSemiring R]
{p q : Polynomial R}
(k : ℕ)
(t : R)
:
Polynomial.eval t (p.comp^[k] q) = (fun (x : R) => Polynomial.eval x p)^[k] (Polynomial.eval t q)
theorem
Polynomial.isUnit_of_isUnit_leadingCoeff_of_isUnit_map
{R : Type u}
{S : Type v}
[Semiring R]
[CommRing S]
[IsDomain S]
(φ : R →+* S)
{f : Polynomial R}
(hf : IsUnit f.leadingCoeff)
(H : IsUnit (Polynomial.map φ f))
:
IsUnit f