Documentation

Mathlib.RingTheory.Spectrum.Prime.Topology

The Zariski topology on the prime spectrum of a commutative (semi)ring #

Conventions #

We denote subsets of (semi)rings with s, s', etc... whereas we denote subsets of prime spectra with t, t', etc...

Inspiration/contributors #

The contents of this file draw inspiration from https://github.com/ramonfmir/lean-scheme which has contributions from Ramon Fernandez Mir, Kevin Buzzard, Kenny Lau, and Chris Hughes (on an earlier repository).

Main definitions #

Main results #

In the prime spectrum of a commutative semiring:

The Zariski topology on the prime spectrum of a commutative (semi)ring is defined via the closed sets of the topology: they are exactly those sets that are the zero locus of a subset of the ring.

Equations
theorem PrimeSpectrum.isOpen_iff {R : Type u} [CommSemiring R] (U : Set (PrimeSpectrum R)) :
IsOpen U ∃ (s : Set R), U = zeroLocus s

The antitone order embedding of closed subsets of Spec R into ideals of R.

Equations
Instances For

    The prime spectrum of a commutative (semi)ring is a compact topological space.

    The prime spectrum of a commutative semiring has discrete Zariski topology iff it is finite and the semiring has Krull dimension zero or is trivial.

    @[deprecated PrimeSpectrum.discreteTopology_iff_finite_and_krullDimLE_zero (since := "2025-02-05")]

    The prime spectrum of a semiring has discrete Zariski topology iff there are only finitely many maximal ideals and their intersection is contained in the nilradical.

    The continuous function between prime spectra of commutative (semi)rings induced by a ring homomorphism.

    Equations
    Instances For
      theorem PrimeSpectrum.coe_comap {R : Type u} {S : Type v} [CommSemiring R] [CommSemiring S] (f : R →+* S) :
      (comap f) = f.specComap
      theorem PrimeSpectrum.comap_apply {R : Type u} {S : Type v} [CommSemiring R] [CommSemiring S] (f : R →+* S) (x : PrimeSpectrum S) :
      (comap f) x = f.specComap x
      @[simp]
      theorem PrimeSpectrum.comap_asIdeal {R : Type u} {S : Type v} [CommSemiring R] [CommSemiring S] (f : R →+* S) (y : PrimeSpectrum S) :
      @[simp]
      theorem PrimeSpectrum.comap_comp {R : Type u} {S : Type v} [CommSemiring R] [CommSemiring S] {S' : Type u_1} [CommSemiring S'] (f : R →+* S) (g : S →+* S') :
      comap (g.comp f) = (comap f).comp (comap g)
      theorem PrimeSpectrum.comap_comp_apply {R : Type u} {S : Type v} [CommSemiring R] [CommSemiring S] {S' : Type u_1} [CommSemiring S'] (f : R →+* S) (g : S →+* S') (x : PrimeSpectrum S') :
      (comap (g.comp f)) x = (comap f) ((comap g) x)
      @[simp]
      theorem PrimeSpectrum.preimage_comap_zeroLocus {R : Type u} {S : Type v} [CommSemiring R] [CommSemiring S] (f : R →+* S) (s : Set R) :
      (comap f) ⁻¹' zeroLocus s = zeroLocus (f '' s)
      @[deprecated PrimeSpectrum.localization_comap_isInducing (since := "2024-10-28")]

      Alias of PrimeSpectrum.localization_comap_isInducing.

      @[deprecated PrimeSpectrum.localization_comap_isEmbedding (since := "2024-10-26")]

      Alias of PrimeSpectrum.localization_comap_isEmbedding.

      @[deprecated PrimeSpectrum.comap_isInducing_of_surjective (since := "2024-10-28")]

      Alias of PrimeSpectrum.comap_isInducing_of_surjective.

      Homeomorphism between prime spectra induced by an isomorphism of semirings.

      Equations
      • One or more equations did not get rendered due to their size.
      Instances For

        The comap of a surjective ring homomorphism is a closed embedding between the prime spectra.

        @[deprecated PrimeSpectrum.isClosedEmbedding_comap_of_surjective (since := "2024-10-20")]

        Alias of PrimeSpectrum.isClosedEmbedding_comap_of_surjective.

        The prime spectrum of R × S is homeomorphic to the disjoint union of PrimeSpectrum R and PrimeSpectrum S.

        Equations
        Instances For

          basicOpen r is the open subset containing all prime ideals not containing r.

          Equations
          Instances For
            @[simp]
            theorem PrimeSpectrum.mem_basicOpen {R : Type u} [CommSemiring R] (f : R) (x : PrimeSpectrum R) :
            x basicOpen f fx.asIdeal
            @[simp]
            theorem PrimeSpectrum.basicOpen_pow {R : Type u} [CommSemiring R] (f : R) (n : ) (hn : 0 < n) :
            theorem PrimeSpectrum.eq_biUnion_of_isOpen {R : Type u} [CommSemiring R] {s : Set (PrimeSpectrum R)} (hs : IsOpen s) :
            s = ⋃ (r : R), ⋃ (_ : (basicOpen r) s), (basicOpen r)
            @[deprecated PrimeSpectrum.localization_away_isOpenEmbedding (since := "2024-10-18")]

            Alias of PrimeSpectrum.localization_away_isOpenEmbedding.

            theorem PrimeSpectrum.iSup_basicOpen_eq_top_iff {R : Type u} [CommSemiring R] {ι : Type u_1} {f : ιR} :
            ⨆ (i : ι), basicOpen (f i) = Ideal.span (Set.range f) =

            If the prime spectrum of a commutative semiring R has discrete Zariski topology, then R is canonically isomorphic to the product of its localizations at the (finitely many) maximal ideals.

            Stacks Tag 00JA (See also PrimeSpectrum.discreteTopology_iff_finite_isMaximal_and_sInf_le_nilradical.)

            Equations
            Instances For
              @[deprecated MaximalSpectrum.toPiLocalizationEquiv (since := "2025-02-12")]

              Alias of MaximalSpectrum.toPiLocalizationEquiv.


              If the prime spectrum of a commutative semiring R has discrete Zariski topology, then R is canonically isomorphic to the product of its localizations at the (finitely many) maximal ideals.

              Stacks Tag 00JA (See also PrimeSpectrum.discreteTopology_iff_finite_isMaximal_and_sInf_le_nilradical.)

              Equations
              Instances For

                The specialization order #

                We endow PrimeSpectrum R with a partial order, where x ≤ y if and only if y ∈ closure {x}.

                If x specializes to y, then there is a natural map from the localization of y to the localization of x.

                Equations
                Instances For

                  If f : Spec S → Spec R is specializing and surjective, the topology on Spec R is the quotient topology induced by f.

                  If f : Spec S → Spec R is generalizing and surjective, the topology on Spec R is the quotient topology induced by f.

                  theorem PrimeSpectrum.denseRange_comap_iff_minimalPrimes {R : Type u_1} {S : Type u_2} [CommSemiring R] [CommSemiring S] (f : R →+* S) :
                  DenseRange (comap f) ∀ (I : Ideal R) (h : I minimalPrimes R), { asIdeal := I, isPrime := } Set.range (comap f)

                  Stacks Tag 00FL

                  Zero loci of prime ideals are closed irreducible sets in the Zariski topology and any closed irreducible set is a zero locus of some prime ideal.

                  Equations
                  Instances For
                    theorem PrimeSpectrum.basicOpen_eq_zeroLocus_of_mul_add {R : Type u} [CommSemiring R] (e f : R) (mul : e * f = 0) (add : e + f = 1) :
                    theorem PrimeSpectrum.zeroLocus_eq_basicOpen_of_mul_add {R : Type u} [CommSemiring R] (e f : R) (mul : e * f = 0) (add : e + f = 1) :
                    theorem PrimeSpectrum.isClopen_basicOpen_of_mul_add {R : Type u} [CommSemiring R] (e f : R) (mul : e * f = 0) (add : e + f = 1) :
                    theorem PrimeSpectrum.exists_mul_eq_zero_add_eq_one_basicOpen_eq_of_isClopen {R : Type u} [CommSemiring R] {s : Set (PrimeSpectrum R)} (hs : IsClopen s) :
                    ∃ (e : R) (f : R), e * f = 0 e + f = 1 s = (basicOpen e) s = (basicOpen f)
                    @[deprecated PrimeSpectrum.exists_idempotent_basicOpen_eq_of_isClopen (since := "2024-11-11")]

                    Alias of PrimeSpectrum.exists_idempotent_basicOpen_eq_of_isClopen.

                    theorem PrimeSpectrum.isClopen_iff_mul_add {R : Type u} [CommSemiring R] {s : Set (PrimeSpectrum R)} :
                    IsClopen s ∃ (e : R) (f : R), e * f = 0 e + f = 1 s = (basicOpen e)
                    theorem PrimeSpectrum.isClopen_iff_mul_add_zeroLocus {R : Type u} [CommSemiring R] {s : Set (PrimeSpectrum R)} :
                    IsClopen s ∃ (e : R) (f : R), e * f = 0 e + f = 1 s = zeroLocus {e}

                    Clopen subsets in the prime spectrum of a commutative semiring are in order-preserving bijection with pairs of elements with product 0 and sum 1. (By definition, (e₁, f₁) ≤ (e₂, f₂) iff e₁ * e₂ = e₁.) Both elements in such pairs must be idempotents, but there may exists idempotents that do not form such pairs (does not have a "complement"). For example, in the semiring {0, 0.5, 1} with ⊔ as + and ⊓ as *, 0.5 has no complement.

                    Equations
                    • One or more equations did not get rendered due to their size.
                    Instances For
                      theorem PrimeSpectrum.isClosedMap_comap_of_isIntegral {R : Type u_1} {S : Type u_2} [CommRing R] [CommRing S] (f : R →+* S) (hf : f.IsIntegral) :
                      theorem PrimeSpectrum.closure_image_comap_zeroLocus {R : Type u_1} {S : Type u_2} [CommRing R] [CommRing S] (f : R →+* S) (I : Ideal S) :

                      Zero loci of minimal prime ideals of R are irreducible components in Spec R and any irreducible component is a zero locus of some minimal prime ideal.

                      Stacks Tag 00ES

                      Equations
                      • One or more equations did not get rendered due to their size.
                      Instances For

                        The closed point in the prime spectrum of a local ring.

                        Equations
                        Instances For
                          @[deprecated IsLocalRing.closedPoint (since := "2024-11-11")]

                          Alias of IsLocalRing.closedPoint.


                          The closed point in the prime spectrum of a local ring.

                          Equations
                          Instances For
                            @[deprecated IsLocalRing.isLocalHom_iff_comap_closedPoint (since := "2024-11-11")]

                            Alias of IsLocalRing.isLocalHom_iff_comap_closedPoint.

                            @[deprecated IsLocalRing.comap_closedPoint (since := "2024-11-11")]

                            Alias of IsLocalRing.comap_closedPoint.

                            @[deprecated IsLocalRing.specializes_closedPoint (since := "2024-11-11")]

                            Alias of IsLocalRing.specializes_closedPoint.

                            @[deprecated IsLocalRing.closedPoint_mem_iff (since := "2024-11-11")]

                            Alias of IsLocalRing.closedPoint_mem_iff.

                            @[deprecated IsLocalRing.closed_point_mem_iff (since := "2024-11-11")]

                            Alias of IsLocalRing.closed_point_mem_iff.

                            @[deprecated IsLocalRing.PrimeSpectrum.comap_residue (since := "2024-11-11")]

                            Alias of IsLocalRing.PrimeSpectrum.comap_residue.

                            theorem PrimeSpectrum.isClopen_iff {R : Type u} [CommRing R] {s : Set (PrimeSpectrum R)} :
                            IsClopen s ∃ (e : R), IsIdempotentElem e s = (basicOpen e)

                            Clopen subsets in the prime spectrum of a commutative ring are in 1-1 correspondence with idempotent elements in the ring.

                            Stacks Tag 00EE

                            Equations
                            Instances For