class
CommGrp_Class
{C : Type u_1}
[CategoryTheory.Category.{u_2, u_1} C]
[CategoryTheory.ChosenFiniteProducts C]
(X : C)
extends Grp_Class X, IsCommMon X :
Type u_2
- mul_assoc' : CategoryTheory.CategoryStruct.comp (CategoryTheory.MonoidalCategoryStruct.whiskerRight mul X) mul = CategoryTheory.CategoryStruct.comp (CategoryTheory.MonoidalCategoryStruct.associator X X X).hom (CategoryTheory.CategoryStruct.comp (CategoryTheory.MonoidalCategoryStruct.whiskerLeft X mul) mul)
Instances
instance
instCommGrp_ClassX
{C : Type u_1}
[CategoryTheory.Category.{u_2, u_1} C]
[CategoryTheory.ChosenFiniteProducts C]
(X : CommGrp_ C)
:
Equations
Equations
- One or more equations did not get rendered due to their size.
def
CategoryTheory.Over.equivalenceOfIsTerminal
{C : Type u_1}
[Category.{u_2, u_1} C]
{X : C}
(hX : Limits.IsTerminal X)
:
If X : C
is initial, then the under category of X
is equivalent to C
.
Equations
- One or more equations did not get rendered due to their size.
Instances For
@[simp]
theorem
CategoryTheory.Over.equivalenceOfIsTerminal_unitIso
{C : Type u_1}
[Category.{u_2, u_1} C]
{X : C}
(hX : Limits.IsTerminal X)
:
(equivalenceOfIsTerminal hX).unitIso = NatIso.ofComponents (fun (Y : Over X) => isoMk (Iso.refl ((Functor.id (Over X)).obj Y).left) ⋯) ⋯
@[simp]
theorem
CategoryTheory.Over.equivalenceOfIsTerminal_functor
{C : Type u_1}
[Category.{u_2, u_1} C]
{X : C}
(hX : Limits.IsTerminal X)
:
@[simp]
theorem
CategoryTheory.Over.equivalenceOfIsTerminal_counitIso
{C : Type u_1}
[Category.{u_2, u_1} C]
{X : C}
(hX : Limits.IsTerminal X)
:
@[simp]
theorem
CategoryTheory.Over.equivalenceOfIsTerminal_inverse_map
{C : Type u_1}
[Category.{u_2, u_1} C]
{X : C}
(hX : Limits.IsTerminal X)
{X✝ Y✝ : C}
(f : X✝ ⟶ Y✝)
:
@[simp]
theorem
CategoryTheory.Over.equivalenceOfIsTerminal_inverse_obj
{C : Type u_1}
[Category.{u_2, u_1} C]
{X : C}
(hX : Limits.IsTerminal X)
(Y : C)
:
instance
instIsRightAdjointOverStar_toric
{C : Type u_1}
[CategoryTheory.Category.{u_2, u_1} C]
[CategoryTheory.Limits.HasBinaryProducts C]
{X : C}
:
noncomputable def
Over.forgetMapTerminal
{C : Type u_1}
[CategoryTheory.Category.{u_2, u_1} C]
[CategoryTheory.Limits.HasTerminal C]
(S : C)
:
Equations
- Over.forgetMapTerminal S = CategoryTheory.NatIso.ofComponents (fun (X : CategoryTheory.Over S) => CategoryTheory.Iso.refl ((CategoryTheory.Over.forget S).obj X)) ⋯
Instances For
Equations
- One or more equations did not get rendered due to their size.
Instances For
The (split) algebraic torus over S
indexed by σ
.
Equations
- SplitTorus S σ = (CommGrp_Torus S σ).X.left
Instances For
Equations
- One or more equations did not get rendered due to their size.
Instances For
instance
instCommGrp_ClassOverSchemeMkOverSplitTorusInferInstanceOverClass
(S : AlgebraicGeometry.Scheme)
(σ : Type u_1)
:
CommGrp_Class (CategoryTheory.Over.mk (SplitTorus S σ ↘ S))
Equations
- One or more equations did not get rendered due to their size.